Answer :
To use the Principle of Mathematical Induction to prove that the statement [tex]\( 6 + 12 + 18 + \cdots + 6n = 3n(n+1) \)[/tex] is true for all natural numbers [tex]\( n \)[/tex], we need to follow two steps:
1. Base Case: Verify the statement for [tex]\( n = 1 \)[/tex].
2. Induction Step: Assume the statement holds for some [tex]\( k \)[/tex] (induction hypothesis), and then prove it for [tex]\( k + 1 \)[/tex].
### Step 1: Base Case
Evaluate the left and right sides of the given statement for the first natural number [tex]\( n = 1 \)[/tex].
#### Left Side:
[tex]\[ 6 \cdot 1 = 6 \][/tex]
#### Right Side:
[tex]\[ 3 \cdot 1 \cdot (1 + 1) = 3 \cdot 1 \cdot 2 = 6 \][/tex]
Both sides are equal, so the base case holds:
[tex]\[ 6 = 6 \][/tex]
### Step 2: Induction Step
Assume the statement is true for [tex]\( n = k \)[/tex]. That is, we assume:
[tex]\[ 6 + 12 + 18 + \cdots + 6k = 3k(k+1) \][/tex]
We need to show that under this assumption, the statement is also true for [tex]\( n = k + 1 \)[/tex].
Write the given statement for [tex]\( n = k + 1 \)[/tex]:
[tex]\[ 6 + 12 + 18 + \cdots + 6k + 6(k+1) = 3(k+1)((k+1)+1) \][/tex]
Simplify the right side:
[tex]\[ 3(k+1)(k+2) \][/tex]
For the left side, use the induction hypothesis:
[tex]\( 6 + 12 + 18 + \cdots + 6k = 3k(k+1) \)[/tex].
So the left side for [tex]\( k + 1 \)[/tex] becomes:
[tex]\[ 3k(k+1) + 6(k+1) \][/tex]
Factor out [tex]\( 3(k+1) \)[/tex] from the terms on the left side:
[tex]\[ 3(k+1)k + 6(k+1) = 3(k+1)(k + 2) \][/tex]
Simplify:
[tex]\[ 3(k+1)(k + 2) \][/tex]
We see that the left side [tex]\( 3(k+1)(k + 2) \)[/tex] matches the simplified right side for [tex]\( k + 1 \)[/tex]:
[tex]\[ 3(k+1)(k+2) \][/tex]
Since both sides are equal, the induction step holds. Therefore, if the statement is true for [tex]\( n = k \)[/tex], it is also true for [tex]\( n = k + 1 \)[/tex].
### Conclusion
By the Principle of Mathematical Induction, since the statement is true for the base case ([tex]\( n = 1 \)[/tex]) and the induction step holds, the statement [tex]\( 6 + 12 + 18 + \cdots + 6n = 3n(n+1) \)[/tex] is true for all natural numbers [tex]\( n \)[/tex].
1. Base Case: Verify the statement for [tex]\( n = 1 \)[/tex].
2. Induction Step: Assume the statement holds for some [tex]\( k \)[/tex] (induction hypothesis), and then prove it for [tex]\( k + 1 \)[/tex].
### Step 1: Base Case
Evaluate the left and right sides of the given statement for the first natural number [tex]\( n = 1 \)[/tex].
#### Left Side:
[tex]\[ 6 \cdot 1 = 6 \][/tex]
#### Right Side:
[tex]\[ 3 \cdot 1 \cdot (1 + 1) = 3 \cdot 1 \cdot 2 = 6 \][/tex]
Both sides are equal, so the base case holds:
[tex]\[ 6 = 6 \][/tex]
### Step 2: Induction Step
Assume the statement is true for [tex]\( n = k \)[/tex]. That is, we assume:
[tex]\[ 6 + 12 + 18 + \cdots + 6k = 3k(k+1) \][/tex]
We need to show that under this assumption, the statement is also true for [tex]\( n = k + 1 \)[/tex].
Write the given statement for [tex]\( n = k + 1 \)[/tex]:
[tex]\[ 6 + 12 + 18 + \cdots + 6k + 6(k+1) = 3(k+1)((k+1)+1) \][/tex]
Simplify the right side:
[tex]\[ 3(k+1)(k+2) \][/tex]
For the left side, use the induction hypothesis:
[tex]\( 6 + 12 + 18 + \cdots + 6k = 3k(k+1) \)[/tex].
So the left side for [tex]\( k + 1 \)[/tex] becomes:
[tex]\[ 3k(k+1) + 6(k+1) \][/tex]
Factor out [tex]\( 3(k+1) \)[/tex] from the terms on the left side:
[tex]\[ 3(k+1)k + 6(k+1) = 3(k+1)(k + 2) \][/tex]
Simplify:
[tex]\[ 3(k+1)(k + 2) \][/tex]
We see that the left side [tex]\( 3(k+1)(k + 2) \)[/tex] matches the simplified right side for [tex]\( k + 1 \)[/tex]:
[tex]\[ 3(k+1)(k+2) \][/tex]
Since both sides are equal, the induction step holds. Therefore, if the statement is true for [tex]\( n = k \)[/tex], it is also true for [tex]\( n = k + 1 \)[/tex].
### Conclusion
By the Principle of Mathematical Induction, since the statement is true for the base case ([tex]\( n = 1 \)[/tex]) and the induction step holds, the statement [tex]\( 6 + 12 + 18 + \cdots + 6n = 3n(n+1) \)[/tex] is true for all natural numbers [tex]\( n \)[/tex].