Select the correct answer.

Which of the following is the simplest form of this expression?
[tex]\[ \frac{\sqrt[5]{a^4}}{\sqrt[3]{a^2}} \][/tex]

A. [tex]\( a^{\frac{2}{15}} \)[/tex]

B. [tex]\( \frac{1}{a^{\frac{7}{4}}} \)[/tex]

C. [tex]\( a^{\frac{7}{4}} \)[/tex]

D. [tex]\( \frac{1}{a^{\frac{2}{15}}} \)[/tex]



Answer :

To simplify the expression [tex]\(\frac{\sqrt[5]{a^4}}{\sqrt[3]{a^2}}\)[/tex], let's break down each part step-by-step.

1. Rewrite the roots as exponents:

- The fifth root of [tex]\(a^4\)[/tex] can be written as [tex]\(a^{4/5}\)[/tex].
- The cube root of [tex]\(a^2\)[/tex] can be written as [tex]\(a^{2/3}\)[/tex].

So, the expression becomes:
[tex]\[ \frac{a^{4/5}}{a^{2/3}} \][/tex]

2. Simplify the fraction:

When you divide two expressions with the same base, you subtract the exponents:
[tex]\[ a^{\frac{4}{5}} \div a^{\frac{2}{3}} = a^{\frac{4}{5} - \frac{2}{3}} \][/tex]

3. Subtract the exponents:

To subtract [tex]\(\frac{4}{5}\)[/tex] and [tex]\(\frac{2}{3}\)[/tex], we need a common denominator. The least common denominator of 5 and 3 is 15.

- Convert [tex]\(\frac{4}{5}\)[/tex] to have a denominator of 15:
[tex]\[ \frac{4}{5} = \frac{4 \times 3}{5 \times 3} = \frac{12}{15} \][/tex]

- Convert [tex]\(\frac{2}{3}\)[/tex] to have a denominator of 15:
[tex]\[ \frac{2}{3} = \frac{2 \times 5}{3 \times 5} = \frac{10}{15} \][/tex]

- Subtract the fractions:
[tex]\[ \frac{12}{15} - \frac{10}{15} = \frac{2}{15} \][/tex]

4. Write the simplified expression:

The simplified exponent is [tex]\(\frac{2}{15}\)[/tex], so the expression simplifies to:
[tex]\[ a^{\frac{2}{15}} \][/tex]

Therefore, the simplest form of [tex]\(\frac{\sqrt[5]{a^4}}{\sqrt[3]{a^2}}\)[/tex] is:

Answer:
[tex]\[ \boxed{a^{\frac{2}{15}}} \][/tex]

Thus, the correct answer is option A. [tex]\(a^{\frac{2}{15}}\)[/tex].