c) ¿Cuántas veces está [tex]\frac{1}{2}[/tex] en 1? [tex]\square[/tex]

d) ¿Cuántas veces está [tex]\frac{1}{4}[/tex] en [tex]\frac{1}{2}[/tex]? [tex]\square[/tex]

9. Realiza las siguientes divisiones:
a) [tex]-\left(\frac{-7}{-3}\right) \div\left(\frac{-5}{6}\right) = \square[/tex]
b) [tex]\left(\frac{64}{-27}\right) \div\left(\frac{-12}{7}\right) = \square[/tex]
c) [tex]\frac{2}{5} \div 1, \hat{3} = \square[/tex]

10. Resuelve el siguiente problema:
Se quieren envasar 80 kilos de café en paquetes de [tex]\frac{2}{5}[/tex] de kilo cada uno. ¿Cuántos paquetes se obtendrán?
[tex]\square[/tex]



Answer :

¡Por supuesto! Vamos a resolver cada una de estas preguntas paso a paso.

### c) ¿Cuántas veces está [tex]\(\frac{1}{2}\)[/tex] en 1?

Para determinar cuántas veces [tex]\(\frac{1}{2}\)[/tex] está en 1, necesitamos dividir 1 entre [tex]\(\frac{1}{2}\)[/tex]:

[tex]\[ \frac{1}{\frac{1}{2}} = 2.0 \][/tex]

Por lo tanto, [tex]\(\frac{1}{2}\)[/tex] está en 1 un total de 2 veces.

### d) ¿Cuántas veces está [tex]\(\frac{1}{4}\)[/tex] en [tex]\(\frac{1}{2}\)[/tex]?

Para encontrar cuántas veces [tex]\(\frac{1}{4}\)[/tex] está en [tex]\(\frac{1}{2}\)[/tex], dividimos [tex]\(\frac{1}{2}\)[/tex] entre [tex]\(\frac{1}{4}\)[/tex]:

[tex]\[ \frac{\frac{1}{2}}{\frac{1}{4}} = 2.0 \][/tex]

Así que, [tex]\(\frac{1}{4}\)[/tex] está en [tex]\(\frac{1}{2}\)[/tex] un total de 2 veces.

### 9. Realiza las siguientes divisiones.

a) [tex]\(-\left(\frac{-7}{-3}\right) \div\left(\frac{-5}{6}\right)\)[/tex]

Primero, simplificamos los signos de las fracciones:

[tex]\[ -\left(\frac{7}{3}\right) \div \left(\frac{-5}{6}\right) \][/tex]

Para dividir fracciones, multiplicamos por el recíproco de la segunda fracción:

[tex]\[ -\left(\frac{7}{3}\right) \times \left(\frac{6}{-5}\right) = 2.8 \][/tex]

Por tanto,

[tex]\[ -\left(\frac{-7}{-3}\right) \div \left(\frac{-5}{6}\right) = 2.8 \][/tex]

b) [tex]\(\left(\frac{64}{-27}\right) \div \left(\frac{-12}{7}\right)\)[/tex]

Primero, simplificamos los signos de las fracciones:

[tex]\[ \left(\frac{64}{-27}\right) \div \left(\frac{-12}{7}\right) \][/tex]

Para dividir las fracciones, multiplicamos por el recíproco de la segunda fracción:

[tex]\[ \left(\frac{64}{-27}\right) \times \left(\frac{7}{-12}\right) = 1.382716049382716 \][/tex]

Por tanto,

[tex]\[ \left(\frac{64}{-27}\right) \div \left(\frac{-12}{7}\right) = 1.382716049382716 \][/tex]

c) [tex]\(\frac{2}{5} \div 1.3\)[/tex]

Convertimos el número decimal a fracción:

[tex]\[ 1.3 = \frac{13}{10} \][/tex]

Entonces, la división es:

[tex]\[ \frac{2}{5} \div \frac{13}{10} \][/tex]

Multiplicamos por el recíproco:

[tex]\[ \frac{2}{5} \times \frac{10}{13} = 0.3076923076923077 \][/tex]

Por lo tanto,

[tex]\[ \frac{2}{5} \div 1.3 = 0.3076923076923077 \][/tex]

### 10. Resuelve el siguiente problema.

Se quieren envasar 80 kilos de café en paquetes de [tex]\(\frac{2}{5}\)[/tex] de kilo cada uno. ¿Cuántos paquetes se obtendrán?

Para determinar el número de paquetes, dividimos la cantidad total de café entre el tamaño de cada paquete:

[tex]\[ \frac{80}{\frac{2}{5}} \][/tex]

Multiplicamos por el recíproco del tamaño del paquete:

[tex]\[ 80 \times \frac{5}{2} = 200 \][/tex]

Por lo tanto, se obtendrán un total de 200 paquetes.

---

Espero que estas soluciones detalladas te sean útiles. ¡Si tienes alguna otra pregunta, no dudes en preguntar!