Evaluate the function at the given values.

[tex]\[ h(t) = -t^2 - 7 \][/tex]

a. [tex]\( h(3) = \square \)[/tex]

b. [tex]\( h(-4) = \square \)[/tex]

c. [tex]\( h(0) = \square \)[/tex]



Answer :

Certainly! Let's evaluate the function [tex]\( h(t) = -t^2 - 7 \)[/tex] at the given values step by step.

### a. Evaluate [tex]\( h(3) \)[/tex]:
1. Substitute [tex]\( t = 3 \)[/tex] into the function [tex]\( h(t) \)[/tex]:
[tex]\[ h(3) = -(3)^2 - 7 \][/tex]
2. Calculate [tex]\( 3^2 \)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]
3. Multiply by [tex]\(-1\)[/tex]:
[tex]\[ -(3^2) = -9 \][/tex]
4. Subtract 7 from [tex]\(-9\)[/tex]:
[tex]\[ -9 - 7 = -16 \][/tex]
Thus,
[tex]\[ h(3) = -16 \][/tex]

### b. Evaluate [tex]\( h(-4) \)[/tex]:
1. Substitute [tex]\( t = -4 \)[/tex] into the function [tex]\( h(t) \)[/tex]:
[tex]\[ h(-4) = -(-4)^2 - 7 \][/tex]
2. Calculate [tex]\((-4)^2 \)[/tex]:
[tex]\[ (-4)^2 = 16 \][/tex]
3. Multiply by [tex]\(-1\)[/tex]:
[tex]\[ -(16) = -16 \][/tex]
4. Subtract 7 from [tex]\(-16\)[/tex]:
[tex]\[ -16 - 7 = -23 \][/tex]
Thus,
[tex]\[ h(-4) = -23 \][/tex]

### c. Evaluate [tex]\( h(0) \)[/tex]:
1. Substitute [tex]\( t = 0 \)[/tex] into the function [tex]\( h(t) \)[/tex]:
[tex]\[ h(0) = -(0)^2 - 7 \][/tex]
2. Calculate [tex]\( 0^2 \)[/tex]:
[tex]\[ 0^2 = 0 \][/tex]
3. Multiply by [tex]\(-1\)[/tex]:
[tex]\[ -(0) = 0 \][/tex]
4. Subtract 7 from [tex]\( 0 \)[/tex]:
[tex]\[ 0 - 7 = -7 \][/tex]
Thus,
[tex]\[ h(0) = -7 \][/tex]

In summary:
a. [tex]\( h(3) = -16 \)[/tex]

b. [tex]\( h(-4) = -23 \)[/tex]

c. [tex]\( h(0) = -7 \)[/tex]