The sum of two numbers is 72, while the difference between the numbers is 19. The larger of the numbers is:

A) [tex]\( 45 \frac{1}{2} \)[/tex]
B) [tex]\( 44 \frac{1}{2} \)[/tex]
C) 45
D) 46
E) [tex]\( 26 \frac{1}{2} \)[/tex]



Answer :

Sure, let's solve this step by step.

We are given two pieces of information:
1. The sum of two numbers is 72.
2. The difference between the two numbers is 19.

Let the larger number be [tex]\( x \)[/tex] and the smaller number be [tex]\( y \)[/tex]. Therefore, we can write the following equations based on the given information:

[tex]\[ x + y = 72 \quad \text{(Equation 1)} \][/tex]
[tex]\[ x - y = 19 \quad \text{(Equation 2)} \][/tex]

To find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex], we can add these two equations together. By doing this, we eliminate [tex]\( y \)[/tex]:

[tex]\[ (x + y) + (x - y) = 72 + 19 \][/tex]

Simplifying the left-hand side, we get:

[tex]\[ 2x = 91 \][/tex]

To solve for [tex]\( x \)[/tex], we divide both sides by 2:

[tex]\[ x = \frac{91}{2} = 45.5 \][/tex]

So, the larger number [tex]\( x \)[/tex] is [tex]\( 45.5 \)[/tex].

Now let's confirm the options:

A) [tex]\( 45 \frac{1}{2} \)[/tex]
B) [tex]\( 44 \frac{1}{2} \)[/tex]
C) 45
D) 46
E) [tex]\( 26 \frac{1}{2} \)[/tex]

The correct answer is [tex]\( 45 \frac{1}{2} \)[/tex], which is [tex]\( 45.5 \)[/tex].

Thus, the larger number is [tex]\( 45 \frac{1}{2} \)[/tex], and the correct option is:
A) [tex]\( 45 \frac{1}{2} \)[/tex].