Answer :

Sure! Let's start by finding the derivative [tex]\( f'(x) \)[/tex] of the function [tex]\( f(x) = \frac{6x + 4}{3x + 6} \)[/tex].

### Step 1: Find [tex]\( f'(x) \)[/tex] using the Quotient Rule

The Quotient Rule states that if you have a function [tex]\( f(x) \)[/tex] in the form [tex]\( \frac{u(x)}{v(x)} \)[/tex], then the derivative [tex]\( f'(x) \)[/tex] is given by:
[tex]\[ f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2} \][/tex]
where [tex]\( u(x) = 6x + 4 \)[/tex] and [tex]\( v(x) = 3x + 6 \)[/tex].

First, let's find the derivatives of [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex]:

[tex]\[ u'(x) = \frac{d}{dx}(6x + 4) = 6 \][/tex]
[tex]\[ v'(x) = \frac{d}{dx}(3x + 6) = 3 \][/tex]

Now, apply the Quotient Rule:

[tex]\[ f'(x) = \frac{(6)(3x + 6) - (6x + 4)(3)}{(3x + 6)^2} \][/tex]

Simplify the numerator:

[tex]\[ = \frac{18x + 36 - (18x + 12)}{(3x + 6)^2} \][/tex]
[tex]\[ = \frac{18x + 36 - 18x - 12}{(3x + 6)^2} \][/tex]
[tex]\[ = \frac{24}{(3x + 6)^2} \][/tex]

To further simplify:

[tex]\[ = \frac{6 \cdot 4}{(3x + 6)^2} = \frac{6}{3x + 6} - \frac{18 (6 x + 4)}{(3x + 6)^2} . \][/tex]

Combining both, we use the result:

[tex]\[ f'(x) = 6/(3x + 6) - 3*(6x + 4)/(3x + 6)^2. \][/tex]

### Step 2: Evaluate [tex]\( f'(x) \)[/tex] at [tex]\( x = 4 \)[/tex]

To find [tex]\( f'(4) \)[/tex], substitute [tex]\( x = 4 \)[/tex] into [tex]\( f'(x) \)[/tex]:

[tex]\[ f'(4) = 6/(3(4) + 6) - 3*(6(4) + 4)/(3(4) + 6)^2 \][/tex]
[tex]\[ = 6/(12 + 6) - 3*(24 + 4)/(18)^2 \][/tex]
[tex]\[ = 6/18 - 3*(28)/324 \][/tex]
[tex]\[ = 1/3 - (84/324) \][/tex]
[tex]\[ = 1/3 - 0.25925 \][/tex]
[tex]\[ f'(4) = 2/27 \][/tex]

Thus, the solution to the problem is:
[tex]\[ f'(x) = 6/(3x + 6) - 3*(6x + 4)/(3x + 6)^2 \][/tex]

[tex]\[ f'(4) = 2/27 \][/tex]