Express the number 0.009402 in scientific notation.

A. [tex]9.402 \times 10^{-6}[/tex]
B. [tex]9402 \times 10^6[/tex]
C. [tex]9.402 \times 10^{-3}[/tex]
D. [tex]9.402 \times 10^3[/tex]



Answer :

To express the number [tex]\(0.009402\)[/tex] in scientific notation, we need to rewrite it in the form [tex]\(a \times 10^b\)[/tex], where [tex]\(1 \leq a < 10\)[/tex] and [tex]\(b\)[/tex] is an integer.

1. Identify the decimal point move:

The given number is [tex]\(0.009402\)[/tex]. To convert this into the form [tex]\(a \times 10^b\)[/tex], we need to move the decimal point such that [tex]\(a\)[/tex] is a number between 1 and 10.

Moving the decimal point three places to the right, we get:
[tex]\[ 0.009402 \rightarrow 9.402 \][/tex]

2. Determine the exponent:

Since we moved the decimal point three places to the right, this corresponds to multiplying by [tex]\(10^{-3}\)[/tex]. This is because moving to the right means the exponent is negative.

3. Write in scientific notation:

Hence, [tex]\(0.009402\)[/tex] can be written as:
[tex]\[ 0.009402 = 9.402 \times 10^{-3} \][/tex]

Now, let's match this with the given answer choices:

A. [tex]\(9.402 \times 10^{-6}\)[/tex] — Incorrect exponent.
B. [tex]\(9402 \times 10^6\)[/tex] — Incorrect form and exponent.
C. [tex]\(9.402 \times 10^{-3}\)[/tex] — Correct.
D. [tex]\(9.402 \times 10^3\)[/tex] — Incorrect exponent.

The correct answer is:
[tex]\[ \boxed{C} \][/tex]