Select the correct answer.

Which expression is equivalent to the given expression?

[tex]\left(12 g^2 h^7\right)\left(3 g^{-2} h^{-4}\right)[/tex]

A. [tex]36 g h^3[/tex]

B. [tex]36 h^3[/tex]

C. [tex]\frac{36}{g^4 h^{28}}[/tex]

D. [tex]\frac{36}{h^3}[/tex]



Answer :

To find the expression equivalent to [tex]\(\left(12 g^2 h^7\right)\left(3 g^{-2} h^{-4}\right)\)[/tex], follow these steps:

1. Identify the coefficients and variables:

The given expression is [tex]\((12 g^2 h^7)(3 g^{-2} h^{-4})\)[/tex].

2. Multiply the coefficients separately:

The coefficients are [tex]\(12\)[/tex] and [tex]\(3\)[/tex]. Multiply these together:

[tex]\[ 12 \times 3 = 36 \][/tex]

3. Apply exponent rules to variables with the same base:

- For the [tex]\(g\)[/tex] terms, combine the exponents using the rule [tex]\(a^m \times a^n = a^{m+n}\)[/tex]:
[tex]\[ g^2 \times g^{-2} = g^{2 + (-2)} = g^0 \][/tex]
Any number raised to the power of zero is 1, thus [tex]\(g^0 = 1\)[/tex].

- For the [tex]\(h\)[/tex] terms, combine the exponents the same way:
[tex]\[ h^7 \times h^{-4} = h^{7 + (-4)} = h^3 \][/tex]

4. Combine the results:

Multiplying the coefficients and the simplified variables together:
[tex]\[ 36 \times 1 \times h^3 = 36 h^3 \][/tex]

Hence, the expression equivalent to [tex]\(\left(12 g^2 h^7\right)\left(3 g^{-2} h^{-4}\right)\)[/tex] is [tex]\(36 h^3\)[/tex].

Therefore, the correct answer is:

B. [tex]\(36 h^3\)[/tex]