Select the correct answer.

Which expression is equivalent to the given expression [tex]\( (-6ab)^2 \)[/tex]?

A. [tex]\( -36a^2b^2 \)[/tex]

B. [tex]\( 36a^2b^2 \)[/tex]

C. [tex]\( -12a^2b^2 \)[/tex]

D. [tex]\( -12ab^2 \)[/tex]



Answer :

To determine the equivalent expression for [tex]\( (-6ab)^2 \)[/tex], let's break it down step by step.

1. Understand the Squaring Operation:

Squaring an expression means multiplying the expression by itself:
[tex]\[ (-6ab)^2 = (-6ab) \cdot (-6ab) \][/tex]

2. Multiply the Constants:

First, multiply the numerical coefficients:
[tex]\[ -6 \times -6 = 36 \][/tex]

Notice that the product of two negative numbers is positive.

3. Multiply the Variables:

Next, consider the variables in the expression:
[tex]\[ a \times a = a^2 \quad \text{and} \quad b \times b = b^2 \][/tex]

4. Combine Everything Together:

Combine the results of the multiplication of the constants and the products of the variables:
[tex]\[ 36 \cdot a^2 \cdot b^2 = 36a^2b^2 \][/tex]

Therefore, the expression [tex]\( (-6ab)^2 \)[/tex] simplifies to [tex]\( 36a^2b^2 \)[/tex].

Thus, the correct answer is:
[tex]\[ \boxed{36a^2b^2} \][/tex]

So the correct option is:
B. [tex]\( 36a^2b^2 \)[/tex]