Which is NOT equivalent to [tex]$1 \frac{1}{4}$[/tex]?

(A) [tex]$1+\frac{1}{4}$[/tex]
(B) [tex]$\frac{1}{4}+\frac{1}{4}+\frac{3}{4}$[/tex]
(C) [tex][tex]$\frac{4}{4}+\frac{1}{4}$[/tex][/tex]
(D) [tex]$\frac{5}{4}+\frac{1}{4}$[/tex]



Answer :

To determine which expression is NOT equivalent to [tex]\(1\frac{1}{4}\)[/tex], let’s analyze each option carefully and convert them into a common form if necessary.

Firstly, let's convert [tex]\(1\frac{1}{4}\)[/tex] to an improper fraction:
[tex]\[ 1\frac{1}{4} = 1 + \frac{1}{4} = \frac{4}{4} + \frac{1}{4} = \frac{5}{4} \][/tex]

Now, let's examine each option:

Option (A): [tex]\(1+\frac{1}{4}\)[/tex]
[tex]\[ 1 + \frac{1}{4} = \frac{4}{4} + \frac{1}{4} = \frac{5}{4} \][/tex]

Option (3): [tex]\(\frac{1}{4}+\frac{1}{4}+\frac{3}{4}\)[/tex]
[tex]\[ \frac{1}{4} + \frac{1}{4} + \frac{3}{4} = \frac{1+1+3}{4} = \frac{5}{4} \][/tex]

Option (C): [tex]\(\frac{4}{4}+\frac{1}{4}\)[/tex]
[tex]\[ \frac{4}{4} + \frac{1}{4} = \frac{4+1}{4} = \frac{5}{4} \][/tex]

Option (D): [tex]\(\frac{5}{4}+\frac{1}{4}\)[/tex]
[tex]\[ \frac{5}{4} + \frac{1}{4} = \frac{5+1}{4} = \frac{6}{4} = 1\frac{1}{2} \][/tex]

Comparing all the results:
- Option (A): [tex]\(\frac{5}{4}\)[/tex]
- Option (3): [tex]\(\frac{5}{4}\)[/tex]
- Option (C): [tex]\(\frac{5}{4}\)[/tex]
- Option (D): [tex]\( \frac{6}{4} = 1\frac{1}{2} \)[/tex]

The only option that is not equivalent to [tex]\(1\frac{1}{4}\)[/tex] or [tex]\(\frac{5}{4}\)[/tex] is:

Option (D): [tex]\(\frac{5}{4}+\frac{1}{4}\)[/tex], which simplifies to [tex]\(\frac{6}{4} = 1\frac{1}{2}\)[/tex].

Therefore, the answer is:
[tex]\[ \boxed{4} \][/tex]