Solve for [tex]\( x \)[/tex]:
[tex]\[ 7^{x-10} = 25 \][/tex]

a) [tex]\( x = \log_{25}(7) + 10 \)[/tex]
b) [tex]\( x = \log_{7}(25) - 10 \)[/tex]
c) [tex]\( x = \log_{7}(25) + 10 \)[/tex]
d) [tex]\( x = \ln \left(\frac{25}{7}\right) + 10 \)[/tex]
e) [tex]\( x = \log_{25}(7) - 10 \)[/tex]
f) None of the above



Answer :

Sure, let's solve for [tex]\( x \)[/tex] in the equation [tex]\( 7^{x-10} = 25 \)[/tex].

1. Start with the given equation:
[tex]\[ 7^{x-10} = 25 \][/tex]

2. To isolate [tex]\( x \)[/tex], take the logarithm base 7 of both sides:
[tex]\[ \log_7(7^{x-10}) = \log_7(25) \][/tex]

3. Simplify the left-hand side using the property of logarithms [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex]:
[tex]\[ (x-10) \cdot \log_7(7) = \log_7(25) \][/tex]
Since [tex]\( \log_7(7) = 1 \)[/tex], this simplifies to:
[tex]\[ x - 10 = \log_7(25) \][/tex]

4. Isolate [tex]\( x \)[/tex] by adding 10 to both sides:
[tex]\[ x = \log_7(25) + 10 \][/tex]

5. Compare this result with the given answer choices:

- a) [tex]\( x = \log_{25}(7) + 10 \)[/tex]
- b) [tex]\( x = \log_7(25) - 10 \)[/tex]
- c) [tex]\( x = \log_7(25) + 10 \)[/tex]
- d) [tex]\( x = \ln \left(\frac{25}{7}\right) + 10 \)[/tex]
- e) [tex]\( x = \log_{25}(7) - 10 \)[/tex]
- f) None of the above

The correct choice is:

c) [tex]\( x = \log_7(25) + 10 \)[/tex].