Answer :

Sure! To find the radius of the cone given its volume and height, we'll go through the following steps:

1. Understand the Formula for the Volume of a Cone:
The volume [tex]\( V \)[/tex] of a cone can be computed using the formula:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
where:
- [tex]\( V \)[/tex] is the volume,
- [tex]\( \pi \)[/tex] is a constant (approximately 3.14159),
- [tex]\( r \)[/tex] is the radius of the base of the cone,
- [tex]\( h \)[/tex] is the height of the cone.

2. Given Values:
We are given:
[tex]\[ V = 19,200 \, \text{dm}^3 \][/tex]
[tex]\[ h = 16 \, \text{dm} \][/tex]

3. Rearrange the Formula to Solve for [tex]\( r \)[/tex]:
To find the radius [tex]\( r \)[/tex], we need to rearrange the volume formula. Start by solving for [tex]\( r^2 \)[/tex]:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
Multiply both sides by 3 to get rid of the fraction:
[tex]\[ 3V = \pi r^2 h \][/tex]
Divide both sides by [tex]\( \pi h \)[/tex]:
[tex]\[ r^2 = \frac{3V}{\pi h} \][/tex]

4. Substitute the Given Values:
Substitute the values of [tex]\( V = 19,200 \, \text{dm}^3 \)[/tex] and [tex]\( h = 16 \, \text{dm} \)[/tex] into the formula:
[tex]\[ r^2 = \frac{3 \cdot 19,200}{\pi \cdot 16} \][/tex]

5. Calculate [tex]\( r^2 \)[/tex]:
Evaluate the expression:
[tex]\[ r^2 \approx \frac{57,600}{50.2655} \approx 1,145.9155902616465 \][/tex]

6. Find [tex]\( r \)[/tex] by Taking the Square Root:
To find [tex]\( r \)[/tex], take the square root of [tex]\( r^2 \)[/tex]:
[tex]\[ r \approx \sqrt{1,145.9155902616465} \approx 33.851375012865375 \, \text{dm} \][/tex]

Hence, the radius of the cone is approximately [tex]\( 33.85 \)[/tex] dm.