16. If [tex]3ab = 6[/tex], what is the value of [tex]a[/tex] in terms of [tex]b[/tex]?

A. [tex]\frac{2}{b}[/tex]
B. [tex]\frac{2}{b^2}[/tex]
C. [tex]2b[/tex]
D. [tex]2b^2[/tex]



Answer :

Let's solve the given equation for [tex]\(a\)[/tex].

The equation is:
[tex]\[ 3ab = 6 \][/tex]

To isolate [tex]\(a\)[/tex], we need to solve for [tex]\(a\)[/tex] in terms of [tex]\(b\)[/tex].

First, we can divide both sides of the equation by 3:
[tex]\[ ab = \frac{6}{3} \][/tex]

This simplifies to:
[tex]\[ ab = 2 \][/tex]

Next, we need to isolate [tex]\(a\)[/tex], so we divide both sides of the equation by [tex]\(b\)[/tex]:
[tex]\[ a = \frac{2}{b} \][/tex]

So, the value of [tex]\(a\)[/tex] in terms of [tex]\(b\)[/tex] is:
[tex]\[ a = \frac{2}{b} \][/tex]

Therefore, the correct answer is:
(A) [tex]\(\frac{2}{b}\)[/tex]