Find values for [tex]$x$[/tex] and [tex][tex]$y$[/tex][/tex] so that the hanger balances.

[tex]\[2x + 3 = y\][/tex]

| [tex]$x$[/tex] | [tex]$y$[/tex] |
|-----|-----|
| | |

Hanger [tex]$A$[/tex]
- [tex]$x$[/tex] lb.
- [tex]$y$[/tex] lb.
- 3 lb.

Note: Press "Try It" to see if the hanger balances.



Answer :

Sure, let's solve the problem step by step to find the values for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that will balance the hanger.

We have the following system of equations based on the given information:

1. [tex]\( 2x + 3 = y \)[/tex]
2. [tex]\( x = 3 \)[/tex]

From the second equation, we know that [tex]\( x \)[/tex] is equal to 3.

Now, let's substitute [tex]\( x = 3 \)[/tex] into the first equation:

[tex]\[ 2(3) + 3 = y \][/tex]

Simplify the left-hand side of the equation:

[tex]\[ 6 + 3 = y \][/tex]

So,

[tex]\[ y = 9 \][/tex]

Therefore, the values that balance the hanger are:

[tex]\[ x = 3 \][/tex]
[tex]\[ y = 9 \][/tex]

So the hanger will balance with [tex]\( x = 3 \)[/tex] lbs and [tex]\( y = 9 \)[/tex] lbs.