The following data values represent a population. What is the variance of the population? [tex]\mu=9[/tex]. Use the information in the table to help you.

\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 8 & 10 & 14 & 4 \\
\hline
[tex]$\left(x_i-\mu\right)^{2}$[/tex] & 1 & 1 & 25 & 25 \\
\hline
\end{tabular}

A. 14
B. 10
C. 9
D. 13



Answer :

To determine the variance of this population, let's follow a step-by-step method using the provided data.

1. Given Values: The data values ([tex]\( x \)[/tex]) are 8, 10, 14, and 4. The population mean ([tex]\( \mu \)[/tex]) is 9. The squared deviations from the mean are 1, 1, 25, and 25.

2. Variance Calculation:
- Step 1: Sum the squared deviations.
[tex]\[ \text{Sum of squared deviations} = 1 + 1 + 25 + 25 = 52 \][/tex]
- Step 2: Count the number of data values (N). In this case, there are 4 data values (8, 10, 14, and 4).
[tex]\[ N = 4 \][/tex]

- Step 3: Compute the variance by dividing the sum of squared deviations by the number of data values.
[tex]\[ \text{Variance} = \frac{\text{Sum of squared deviations}}{N} = \frac{52}{4} = 13 \][/tex]

Hence, the variance for this population is 13.

3. Conclusion: Comparing with the options provided:
- A. 14
- B. 10
- C. 9
- D. 13

The correct answer is:
[tex]\[ \boxed{13} \][/tex]