Determine the rate of a reaction that follows the rate law: [tex]\(\text{rate} = k[A]^m[B]^n\)[/tex], where:

[tex]\[
\begin{array}{l}
k = 0.2 \, \text{L}^2 / \text{mol}^2 / \text{s} \\
[A] = 3 \, \text{M} \\
[B] = 3 \, \text{M} \\
m = 1 \\
n = 2
\end{array}
\][/tex]

A. [tex]\(1.2 \, (\text{mol} / \text{L}) / \text{s}\)[/tex]
B. [tex]\(5.4 \, (\text{mol} / \text{L}) / \text{s}\)[/tex]
C. [tex]\(27 \, (\text{mol} / \text{L}) / \text{s}\)[/tex]
D. [tex]\(1.8 \, (\text{mol} / \text{L}) / \text{s}\)[/tex]



Answer :

To determine the rate of the reaction given the rate law [tex]\( \text{rate} = k[A]^m[B]^n \)[/tex], we need to follow these steps:

1. Identify the constants and reactant concentrations:
- Rate constant [tex]\( k = 0.2 \)[/tex]
- Concentration of [tex]\( A \)[/tex], denoted as [tex]\([A] = 3 \, \text{M}\)[/tex]
- Concentration of [tex]\( B \)[/tex], denoted as [tex]\([B] = 3 \, \text{M}\)[/tex]
- Order of reaction with respect to [tex]\( A \)[/tex], denoted as [tex]\( m = 1 \)[/tex]
- Order of reaction with respect to [tex]\( B \)[/tex], denoted as [tex]\( n = 2 \)[/tex]

2. Substitute the identified values into the rate law formula:
[tex]\[ \text{rate} = k[A]^m[B]^n \][/tex]
Using the given values:
[tex]\[ \text{rate} = 0.2 \times (3)^1 \times (3)^2 \][/tex]

3. Calculate the individual powers and multiplications:
- Calculate [tex]\( (3)^1 \)[/tex]:
[tex]\[ (3)^1 = 3 \][/tex]
- Calculate [tex]\( (3)^2 \)[/tex]:
[tex]\[ (3)^2 = 9 \][/tex]
- Multiply these results with the rate constant [tex]\( k \)[/tex]:
[tex]\[ \text{rate} = 0.2 \times 3 \times 9 \][/tex]

4. Multiply the numbers step by step:
- First, multiply [tex]\( 3 \times 9 \)[/tex]:
[tex]\[ 3 \times 9 = 27 \][/tex]
- Then, multiply this result by [tex]\( 0.2 \)[/tex]:
[tex]\[ 0.2 \times 27 = 5.4 \][/tex]

Therefore, the rate of the reaction is [tex]\( 5.4 \, \text{(mol/L)/s} \)[/tex].

The correct answer is:

B. [tex]\( 5.4 \, \text{(mol/L)/s} \)[/tex]