Use the box method to distribute and simplify [tex]$(5x+1)(-2x-5)$[/tex]. Drag and drop the terms to the correct locations of the table.

[tex]$(5x+1)(-2x-5)$[/tex]

[tex]\[
\begin{tabular}{|c|c|}
\hline
& -2x & -5 \\
\hline
5x & & \\
\hline
1 & & \\
\hline
\end{tabular}
\][/tex]



Answer :

Certainly! Let's use the box method to distribute and simplify [tex]\((5x + 1)(-2x - 5)\)[/tex].

1. First, let's set up the box:
[tex]\[ \begin{array}{|c|c|c|} \hline & -2x & -5 \\ \hline 5x & & \\ \hline 1 & & \\ \hline \end{array} \][/tex]

2. Now, let's fill in each cell of the box by multiplying the terms corresponding to the row and column.

- For the cell at the intersection of [tex]\(5x\)[/tex] (the first row) and [tex]\(-2x\)[/tex] (the first column):
[tex]\[ 5x \times (-2x) = -10x^2 \][/tex]

- For the cell at the intersection of [tex]\(5x\)[/tex] (the first row) and [tex]\(-5\)[/tex] (the second column):
[tex]\[ 5x \times (-5) = -25x \][/tex]

- For the cell at the intersection of [tex]\(1\)[/tex] (the second row) and [tex]\(-2x\)[/tex] (the first column):
[tex]\[ 1 \times (-2x) = -2x \][/tex]

- For the cell at the intersection of [tex]\(1\)[/tex] (the second row) and [tex]\(-5\)[/tex] (the second column):
[tex]\[ 1 \times (-5) = -5 \][/tex]

3. Now the box looks like this:
[tex]\[ \begin{array}{|c|c|c|} \hline & -2x & -5 \\ \hline 5x & -10x^2 & -25x \\ \hline 1 & -2x & -5 \\ \hline \end{array} \][/tex]

4. Next, combine like terms from the results obtained in the box. Here, we have:

- The coefficient of [tex]\(x^2\)[/tex] is [tex]\(-10\)[/tex].
- The coefficients of [tex]\(x\)[/tex] terms are [tex]\(-25x\)[/tex] and [tex]\(-2x\)[/tex], which combine to [tex]\(-27x\)[/tex].
- The constant term is [tex]\(-5\)[/tex].

5. Therefore, combining everything together:

[tex]\((5x + 1)(-2x - 5) = -10x^2 - 27x - 5\)[/tex]

To summarize:
[tex]\[ (5x + 1)(-2x - 5) = -10x^2 - 27x - 5 \][/tex]