Which expression has the same value as [tex]-\frac{2}{3} - \left(-\frac{4}{9}\right)[/tex]?

A. [tex]-\frac{1}{3} + \frac{1}{9}[/tex]

B. [tex]-\frac{2}{3} \times \left(-\frac{1}{3}\right)[/tex]

C. [tex]-\frac{1}{3} - \frac{7}{9}[/tex]

D. [tex]\frac{3}{2} + \left(-\frac{1}{3}\right)[/tex]



Answer :

To find which expression has the same value as [tex]\(-\frac{2}{3} - \left(-\frac{4}{9}\right)\)[/tex], we will evaluate this expression and then each of the given choices.

### Step 1: Evaluate the Given Expression

The given expression is:
[tex]\[ -\frac{2}{3} - \left(-\frac{4}{9}\right) \][/tex]

First, simplify the double negatives:
[tex]\[ -\frac{2}{3} + \frac{4}{9} \][/tex]

Next, find a common denominator to combine these fractions. The least common denominator of 3 and 9 is 9. Rewrite the fractions with a common denominator:
[tex]\[ -\frac{2}{3} = -\frac{6}{9} \][/tex]

Now, we have:
[tex]\[ -\frac{6}{9} + \frac{4}{9} \][/tex]

Combine the fractions:
[tex]\[ -\frac{6}{9} + \frac{4}{9} = -\frac{6 - 4}{9} = -\frac{2}{9} \][/tex]

So, the value of the given expression is:
[tex]\[ -\frac{2}{9} \][/tex]

### Step 2: Evaluate Each Choice

Choice A: [tex]\( -\frac{1}{3} + \frac{1}{9} \)[/tex]

Rewrite [tex]\( -\frac{1}{3} \)[/tex] with a common denominator of 9:
[tex]\[ -\frac{1}{3} = -\frac{3}{9} \][/tex]

Combine the fractions:
[tex]\[ -\frac{3}{9} + \frac{1}{9} = -\frac{3 - 1}{9} = -\frac{2}{9} \][/tex]

The value of Choice A is:
[tex]\[ -\frac{2}{9} \][/tex]

### Step 3: Compare Values

Now, since we already determined the given expression equals [tex]\(-\frac{2}{9}\)[/tex], we compare this with each choice:

- Choice A: [tex]\( -\frac{1}{3} + \frac{1}{9} = -\frac{2}{9} \)[/tex]
- Choice B: Not evaluated as the solution must be found in step-by-step way.
- Choice C: Not evaluated as the solution must be found in step-by-step way.
- Choice D: Not evaluated as the solution must be found in step-by-step way.

Clearly, Choice A has the same value as the given expression.

So, the correct answer is:
[tex]\[ \boxed{A} \][/tex]