Answered

Which is equivalent to [tex]\sqrt[3]{8}^x[/tex]?

A. [tex]\sqrt[x]{8}^3[/tex]
B. [tex]8^{\frac{3}{x}}[/tex]
C. [tex]8^{\frac{x}{3}}[/tex]
D. [tex]8^{3 x}[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\sqrt[3]{8}^x\)[/tex], let's start by rewriting [tex]\(\sqrt[3]{8}\)[/tex] in exponential form.

Firstly, we know that:
[tex]\[ \sqrt[3]{8} \text{ is equivalent to } 8^{\frac{1}{3}} \][/tex]

Therefore:
[tex]\[ \sqrt[3]{8}^x = (8^{\frac{1}{3}})^x \][/tex]

Now apply the power of a power property of exponents, which states [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (8^{\frac{1}{3}})^x = 8^{(\frac{1}{3} \cdot x)} = 8^{\frac{x}{3}} \][/tex]

Thus, the expression [tex]\(8^{\frac{x}{3}}\)[/tex] is equivalent to [tex]\(\sqrt[3]{8}^x\)[/tex].

So, the correct answer is

[tex]\[ 8^{\frac{x}{3}} \][/tex]