Find the slope of the line containing the following two points:

[tex]\[
\left(\frac{5}{8}, -\frac{1}{2}\right) \text{ and } \left(\frac{1}{4}, \frac{1}{4}\right).
\][/tex]



Answer :

To find the slope of the line passing through the points [tex]\(\left(\frac{5}{8}, -\frac{1}{2}\right)\)[/tex] and [tex]\(\left(\frac{1}{4}, \frac{1}{4}\right)\)[/tex], we can follow these steps:

1. Identify the coordinates of the two points:
- Point 1: [tex]\(\left(\frac{5}{8}, -\frac{1}{2}\right)\)[/tex]
- Point 2: [tex]\(\left(\frac{1}{4}, \frac{1}{4}\right)\)[/tex]

2. Use the slope formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
where [tex]\((x_1, y_1)\)[/tex] are the coordinates of the first point and [tex]\((x_2, y_2)\)[/tex] are the coordinates of the second point.

3. Substitute the coordinates into the formula:
[tex]\[ m = \frac{\frac{1}{4} - \left(-\frac{1}{2}\right)}{\frac{1}{4} - \frac{5}{8}} \][/tex]

4. Calculate the difference in the y-coordinates:
[tex]\[ y_2 - y_1 = \frac{1}{4} - \left(-\frac{1}{2}\right) \][/tex]
Simplify the expression inside the parentheses:
[tex]\[ y_2 - y_1 = \frac{1}{4} + \frac{1}{2} = \frac{1}{4} + \frac{2}{4} = \frac{3}{4} \][/tex]
So, the difference in the y-coordinates is [tex]\(\frac{3}{4}\)[/tex].

5. Calculate the difference in the x-coordinates:
[tex]\[ x_2 - x_1 = \frac{1}{4} - \frac{5}{8} \][/tex]
To subtract these fractions, convert [tex]\(\frac{1}{4}\)[/tex] to a fraction with a common denominator:
[tex]\[ \frac{1}{4} = \frac{2}{8} \][/tex]
So:
[tex]\[ x_2 - x_1 = \frac{2}{8} - \frac{5}{8} = \frac{2 - 5}{8} = \frac{-3}{8} \][/tex]
Therefore, the difference in the x-coordinates is [tex]\(-\frac{3}{8}\)[/tex].

6. Divide the difference in the y-coordinates by the difference in the x-coordinates:
[tex]\[ m = \frac{\frac{3}{4}}{-\frac{3}{8}} \][/tex]

7. Simplify the division of fractions:
[tex]\[ m = \frac{3}{4} \times \frac{8}{-3} \][/tex]
Multiply the fractions:
[tex]\[ m = \frac{3 \cdot 8}{4 \cdot (-3)} = \frac{24}{-12} = -2 \][/tex]

Thus, the slope of the line passing through the points [tex]\(\left(\frac{5}{8}, -\frac{1}{2}\right)\)[/tex] and [tex]\(\left(\frac{1}{4}, \frac{1}{4}\right)\)[/tex] is [tex]\(-2\)[/tex].