The function [tex] P [/tex], given by [tex] P(d) = \frac{1}{33}d + 1 [/tex], gives the pressure, in atmospheres (atm), at a depth [tex] d [/tex], in feet, under the sea. Find the function values and graph the function.

Find the following value:
[tex]\[ P(0) = \][/tex]
[tex]\[ \boxed{} \][/tex]



Answer :

To find the value of the function [tex]\( P \)[/tex] at a given depth [tex]\( d \)[/tex], we use the formula:
[tex]\[ P(d) = \frac{1}{33} d + 1 \][/tex]

We need to determine [tex]\( P(0) \)[/tex]. Let's substitute [tex]\( d = 0 \)[/tex] into the function:

[tex]\[ P(0) = \frac{1}{33} \cdot 0 + 1 \][/tex]

Calculating inside the parentheses first:
[tex]\[ \frac{1}{33} \cdot 0 = 0 \][/tex]

Then, add the remaining term:
[tex]\[ P(0) = 0 + 1 \][/tex]
[tex]\[ P(0) = 1.0 \][/tex]

Thus, the value of [tex]\( P(0) \)[/tex] is [tex]\( 1.0 \)[/tex].