Answer :
To determine which table has a constant of proportionality between [tex]\( y \)[/tex] and [tex]\( x \)[/tex] of 4, we need to check the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values in the table. The table where this ratio is consistently 4 will have a constant of proportionality of 4.
Let's go through each table step-by-step.
Table (A):
[tex]\[ \begin{tabular}{|ll|} \hline $x$ & $y$ \\ \hline 4 & 16 \\ 9 & 36 \\ 16 & 64 \\ \hline \end{tabular} \][/tex]
Calculate the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair:
1. For [tex]\( x = 4 \)[/tex], [tex]\( y = 16 \)[/tex]:
[tex]\[ \frac{16}{4} = 4 \][/tex]
2. For [tex]\( x = 9 \)[/tex], [tex]\( y = 36 \)[/tex]:
[tex]\[ \frac{36}{9} = 4 \][/tex]
3. For [tex]\( x = 16 \)[/tex], [tex]\( y = 64 \)[/tex]:
[tex]\[ \frac{64}{16} = 4 \][/tex]
Since all three ratios give us 4, Table (A) has a constant of proportionality of 4.
Table (B):
[tex]\[ \begin{tabular}{|ll|} \hline $x$ & $y$ \\ \hline 2 & 8 \\ 10 & 16 \\ 15 & 21 \\ \hline \end{tabular} \][/tex]
Calculate the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair:
1. For [tex]\( x = 2 \)[/tex], [tex]\( y = 8 \)[/tex]:
[tex]\[ \frac{8}{2} = 4 \][/tex]
2. For [tex]\( x = 10 \)[/tex], [tex]\( y = 16 \)[/tex]:
[tex]\[ \frac{16}{10} = 1.6 \][/tex]
3. For [tex]\( x = 15 \)[/tex], [tex]\( y = 21 \)[/tex]:
[tex]\[ \frac{21}{15} = 1.4 \][/tex]
Since the ratios are not all the same and not all equal to 4, Table (B) does not have a constant of proportionality of 4.
Table (C):
[tex]\[ \left\lvert\, \begin{tabular}{|ll|} \hline $x$ & $y$ \\ \hline 3 & 12 \\ 5 & 18 \\ 11 & 36 \\ \hline \end{tabular}\right. \][/tex]
Calculate the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair:
1. For [tex]\( x = 3 \)[/tex], [tex]\( y = 12 \)[/tex]:
[tex]\[ \frac{12}{3} = 4 \][/tex]
2. For [tex]\( x = 5 \)[/tex], [tex]\( y = 18 \)[/tex]:
[tex]\[ \frac{18}{5} = 3.6 \][/tex]
3. For [tex]\( x = 11 \)[/tex], [tex]\( y = 36 \)[/tex]:
[tex]\[ \frac{36}{11} \approx 3.27 \][/tex]
Since the ratios are not all the same and not all equal to 4, Table (C) does not have a constant of proportionality of 4.
Conclusion:
Only Table (A) has a constant of proportionality between [tex]\( y \)[/tex] and [tex]\( x \)[/tex] of 4.
Therefore, the answer is:
[tex]\[ \boxed{1} \][/tex]
Let's go through each table step-by-step.
Table (A):
[tex]\[ \begin{tabular}{|ll|} \hline $x$ & $y$ \\ \hline 4 & 16 \\ 9 & 36 \\ 16 & 64 \\ \hline \end{tabular} \][/tex]
Calculate the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair:
1. For [tex]\( x = 4 \)[/tex], [tex]\( y = 16 \)[/tex]:
[tex]\[ \frac{16}{4} = 4 \][/tex]
2. For [tex]\( x = 9 \)[/tex], [tex]\( y = 36 \)[/tex]:
[tex]\[ \frac{36}{9} = 4 \][/tex]
3. For [tex]\( x = 16 \)[/tex], [tex]\( y = 64 \)[/tex]:
[tex]\[ \frac{64}{16} = 4 \][/tex]
Since all three ratios give us 4, Table (A) has a constant of proportionality of 4.
Table (B):
[tex]\[ \begin{tabular}{|ll|} \hline $x$ & $y$ \\ \hline 2 & 8 \\ 10 & 16 \\ 15 & 21 \\ \hline \end{tabular} \][/tex]
Calculate the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair:
1. For [tex]\( x = 2 \)[/tex], [tex]\( y = 8 \)[/tex]:
[tex]\[ \frac{8}{2} = 4 \][/tex]
2. For [tex]\( x = 10 \)[/tex], [tex]\( y = 16 \)[/tex]:
[tex]\[ \frac{16}{10} = 1.6 \][/tex]
3. For [tex]\( x = 15 \)[/tex], [tex]\( y = 21 \)[/tex]:
[tex]\[ \frac{21}{15} = 1.4 \][/tex]
Since the ratios are not all the same and not all equal to 4, Table (B) does not have a constant of proportionality of 4.
Table (C):
[tex]\[ \left\lvert\, \begin{tabular}{|ll|} \hline $x$ & $y$ \\ \hline 3 & 12 \\ 5 & 18 \\ 11 & 36 \\ \hline \end{tabular}\right. \][/tex]
Calculate the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair:
1. For [tex]\( x = 3 \)[/tex], [tex]\( y = 12 \)[/tex]:
[tex]\[ \frac{12}{3} = 4 \][/tex]
2. For [tex]\( x = 5 \)[/tex], [tex]\( y = 18 \)[/tex]:
[tex]\[ \frac{18}{5} = 3.6 \][/tex]
3. For [tex]\( x = 11 \)[/tex], [tex]\( y = 36 \)[/tex]:
[tex]\[ \frac{36}{11} \approx 3.27 \][/tex]
Since the ratios are not all the same and not all equal to 4, Table (C) does not have a constant of proportionality of 4.
Conclusion:
Only Table (A) has a constant of proportionality between [tex]\( y \)[/tex] and [tex]\( x \)[/tex] of 4.
Therefore, the answer is:
[tex]\[ \boxed{1} \][/tex]