Answer :

Sure, let's factor the expression [tex]\( xy - 10y - 4x + 40 \)[/tex] by grouping.

1. First, we will look at the given expression: [tex]\( xy - 10y - 4x + 40 \)[/tex].

2. Next, we group the terms to make factoring easier:
[tex]\[ (xy - 10y) + (-4x + 40) \][/tex]

3. Factor out the common factors from each group:
[tex]\[ y(x - 10) - 4(x - 10) \][/tex]

4. Notice that each group contains a common binomial factor [tex]\((x - 10)\)[/tex]:
[tex]\[ y(x - 10) - 4(x - 10) = (x - 10)(y - 4) \][/tex]

Thus, the factored form of the expression [tex]\( xy - 10y - 4x + 40 \)[/tex] is:
[tex]\[ (x - 10)(y - 4) \][/tex]