Answer :

Certainly! Let's factor the quadratic polynomial [tex]\( u^2 + 49u + 94 \)[/tex] step by step.

1. Identify the quadratic polynomial:
The polynomial we are working with is [tex]\( u^2 + 49u + 94 \)[/tex].

2. Look for a form:
We want to factor this into the form [tex]\( (u + a)(u + b) \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are numbers we need to find.

3. Apply factoring:
We need to find two numbers [tex]\( a \)[/tex] and [tex]\( b \)[/tex] such that:
[tex]\[ a + b = 49 \][/tex]
and
[tex]\[ ab = 94 \][/tex]

4. Determine the factors:
Solving the above equations for the numbers [tex]\( a \)[/tex] and [tex]\( b \)[/tex], we get [tex]\( a = 2 \)[/tex] and [tex]\( b = 47 \)[/tex].

5. Verification:
To verify, we check if [tex]\( (u + 2)(u + 47) \)[/tex] expands back to [tex]\( u^2 + 49u + 94 \)[/tex]:
[tex]\[ (u + 2)(u + 47) = u^2 + 47u + 2u + 94 = u^2 + 49u + 94 \][/tex]
This confirms that the factors are correct.

Therefore, the factored form of the polynomial [tex]\( u^2 + 49u + 94 \)[/tex] is
[tex]\[ (u + 2)(u + 47). \][/tex]