Answer :

Sure, let's simplify the given expression step by step:

Given expression:
[tex]\[ \frac{(4a)^3 \cdot a \cdot b + (2a)^5}{8a^2b + 8a^2b} \][/tex]

Step 1: Simplify the numerator

1. [tex]\((4a)^3 \cdot a \cdot b\)[/tex]:
[tex]\[ (4a)^3 = 4^3 \cdot a^3 = 64a^3 \][/tex]
Therefore:
[tex]\[ (4a)^3 \cdot a \cdot b = 64a^3 \cdot a \cdot b = 64a^4b \][/tex]

2. [tex]\((2a)^5\)[/tex]:
[tex]\[ (2a)^5 = 2^5 \cdot a^5 = 32a^5 \][/tex]

Combining these results:
[tex]\[ (4a)^3 \cdot a \cdot b + (2a)^5 = 64a^4b + 32a^5 \][/tex]

Step 2: Simplify the denominator

[tex]\[ 8a^2b + 8a^2b = 16a^2b \][/tex]

Step 3: Combine the simplified numerator and denominator

[tex]\[ \frac{64a^4b + 32a^5}{16a^2b} \][/tex]

Step 4: Factor and simplify the expression

The numerator [tex]\(64a^4b + 32a^5\)[/tex] has a common factor. We can factor out [tex]\(32a^4\)[/tex]:
[tex]\[ 64a^4b + 32a^5 = 32a^4(2b + a) \][/tex]

So, the expression becomes:
[tex]\[ \frac{32a^4(2b + a)}{16a^2b} \][/tex]

Step 5: Cancel common factors in the numerator and denominator

[tex]\[ \frac{32a^4(2b + a)}{16a^2b} = \frac{32}{16} \cdot \frac{a^4}{a^2} \cdot \frac{(2b + a)}{b} \][/tex]

Simplifying each part:
[tex]\[ \frac{32}{16} = 2 \][/tex]
[tex]\[ \frac{a^4}{a^2} = a^2 \][/tex]
This yields:
[tex]\[ \frac{2a^2(2b + a)}{b} \][/tex]

So, the simplified expression is:
[tex]\[ \frac{2a^2 (2b + a)}{b} \][/tex]

This is the final simplified form of the given expression.