Find the polynomial function of lowest degree with only real coefficients and having the zeros [tex]\(\sqrt{7}, -\sqrt{7}\)[/tex], and 4.

Choose the correct polynomial function:

A. [tex]\(f(x) = 3x^3 + 9x^2 - 9x - 9\)[/tex]

B. [tex]\(f(x) = x^4 - 5x^3 - 6x^2 + 3x + 7\)[/tex]

C. [tex]\(f(x) = x^3 - 7x^2 - 4x + 28\)[/tex]

D. [tex]\(f(x) = x^3 - 4x^2 - 7x + 28\)[/tex]



Answer :

To find the polynomial function of the lowest degree with only real coefficients and the given zeros [tex]\( \sqrt{7}, -\sqrt{7}, \)[/tex] and [tex]\( 4 \)[/tex], we can follow these steps:

1. Identify the zeros and form the factors:
The given zeros imply the factors of the polynomial. If the polynomial has zeros [tex]\( \sqrt{7}, -\sqrt{7}, \)[/tex] and [tex]\( 4 \)[/tex], the corresponding factors are [tex]\( (x - \sqrt{7}), (x + \sqrt{7}), \)[/tex] and [tex]\( (x - 4) \)[/tex].

2. Multiply the factors to form the polynomial:
Start by multiplying the factors.

First, multiply [tex]\( (x - \sqrt{7}) \)[/tex] and [tex]\( (x + \sqrt{7}) \)[/tex]:
[tex]\[ (x - \sqrt{7})(x + \sqrt{7}) = x^2 - (\sqrt{7})^2 = x^2 - 7 \][/tex]

3. Multiply the result by the remaining factor:
Now multiply [tex]\( (x^2 - 7) \)[/tex] by [tex]\( (x - 4) \)[/tex]:
[tex]\[ (x^2 - 7)(x - 4) = x^3 - 4x^2 - 7x + 28 \][/tex]

4. Write the polynomial function:
The polynomial of the lowest degree with real coefficients that has the given zeros is:
[tex]\[ f(x) = x^3 - 4x^2 - 7x + 28 \][/tex]

Thus, the correct polynomial function is:

D. [tex]\( f(x) = x^3 - 4x^2 - 7x + 28 \)[/tex]