Multiply:

[tex] \sqrt{3x}(\sqrt{42x} + 3\sqrt{3}) \]

A. [tex] 3\sqrt{14x} + 9\sqrt{x} \]

B. [tex] 3x\sqrt{14} + 9\sqrt{x} \]

C. [tex] 3x\sqrt{14} + 9x \]

D. [tex] 3\sqrt{14x} + 9x \]



Answer :

Sure, let's solve the given expression step-by-step:

We want to multiply [tex]\(\sqrt{3x}\)[/tex] with [tex]\((\sqrt{42x} + 3\sqrt{3})\)[/tex]:

[tex]\[ \sqrt{3x} \left( \sqrt{42x} + 3\sqrt{3} \right) \][/tex]

We use the distributive property to expand this:

[tex]\[ (\sqrt{3x}) (\sqrt{42x}) + (\sqrt{3x}) (3\sqrt{3}) \][/tex]

First, let's simplify each term individually.

1. Simplifying [tex]\(\sqrt{3x} \cdot \sqrt{42x}\)[/tex]:

[tex]\[ \sqrt{3x} \cdot \sqrt{42x} = \sqrt{(3x) \cdot (42x)} = \sqrt{126x^2} \][/tex]

Since [tex]\(x^2\)[/tex] is a perfect square, [tex]\(\sqrt{126x^2}\)[/tex] becomes:

[tex]\[ \sqrt{126} \cdot x = \sqrt{126}x = \sqrt{(3 \cdot 42)}x = \sqrt{(3 \cdot 6 \cdot 7)}x = \sqrt{(3 \cdot 3 \cdot 2 \cdot 7)}x = 3\sqrt{14}x \][/tex]

2. Simplifying [tex]\(\sqrt{3x} \cdot 3\sqrt{3}\)[/tex]:

[tex]\[ \sqrt{3x} \cdot 3\sqrt{3} = 3\sqrt{3} \cdot \sqrt{3x} = 3 (\sqrt{3} \cdot \sqrt{3} \cdot \sqrt{x}) = 3 \cdot 3 \cdot \sqrt{x} = 9\sqrt{x} \][/tex]

So, combining these two results, we get:

[tex]\[ 3\sqrt{14}x + 9\sqrt{x} \][/tex]

Therefore, the simplified form of the given expression [tex]\(\sqrt{3x} \left( \sqrt{42x} + 3\sqrt{3} \right)\)[/tex] is:

[tex]\[ 3\sqrt{14}x + 9\sqrt{x} \][/tex]