Solve:
[tex]\[ \sqrt{5x - 1} - 2 = 0 \][/tex]

A. [tex]\( x = \frac{9}{5} \)[/tex]
B. [tex]\( x = \frac{3}{5} \)[/tex]
C. No solution
D. [tex]\( x = 1 \)[/tex]



Answer :

To solve the equation [tex]\(\sqrt{5x - 1} - 2 = 0\)[/tex], we need to follow a series of algebraic steps. Let’s solve the equation step-by-step:

1. Isolate the square root term:

[tex]\[ \sqrt{5x - 1} - 2 = 0 \][/tex]

Add 2 to both sides to isolate the square root term:

[tex]\[ \sqrt{5x - 1} = 2 \][/tex]

2. Remove the square root:

Square both sides of the equation to eliminate the square root:

[tex]\[ (\sqrt{5x - 1})^2 = 2^2 \][/tex]

Simplifying both sides:

[tex]\[ 5x - 1 = 4 \][/tex]

3. Solve for [tex]\(x\)[/tex]:

Add 1 to both sides to isolate the [tex]\(x\)[/tex] term:

[tex]\[ 5x = 4 + 1 \][/tex]

Simplifying the right-hand side:

[tex]\[ 5x = 5 \][/tex]

Finally, divide both sides by 5 to solve for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{5}{5} = 1 \][/tex]

4. Verify the solution:

Substitute [tex]\(x = 1\)[/tex] back into the original equation to verify it satisfies the equation:

[tex]\[ \sqrt{5(1) - 1} - 2 = 0 \][/tex]

Calculate the expression inside the square root:

[tex]\[ \sqrt{5 - 1} - 2 = \sqrt{4} - 2 = 2 - 2 = 0 \][/tex]

Since the left-hand side equals the right-hand side, the solution [tex]\(x = 1\)[/tex] is correct.

Therefore, the solution to the equation [tex]\(\sqrt{5x - 1} - 2 = 0\)[/tex] is

[tex]\[ x = 1 \][/tex]