Select the correct answer.

Find the inverse of the function [tex]\( f \)[/tex]:
[tex]\[ f(x) = \frac{1}{3} - \frac{1}{21} x \][/tex]

A. [tex]\( f^{-1}(x) = 7 - \frac{1}{21} x \)[/tex]
B. [tex]\( f^{-1}(x) = 7 - 21 x \)[/tex]
C. [tex]\( f^{-1}(x) = \frac{1}{7} - 21 x \)[/tex]
D. [tex]\( f^{-1}(x) = \frac{1}{7} - \frac{1}{21} x \)[/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = \frac{1}{3} - \frac{1}{21} x \)[/tex], we need to follow these steps:

1. Rewrite the function equation in terms of [tex]\( y \)[/tex]:
[tex]\[ y = \frac{1}{3} - \frac{1}{21} x \][/tex]

2. Swap the variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to find the inverse function:
[tex]\[ x = \frac{1}{3} - \frac{1}{21} y \][/tex]

3. Solve for [tex]\( y \)[/tex]:

- Start by isolating the term involving [tex]\( y \)[/tex]:
[tex]\[ x - \frac{1}{3} = -\frac{1}{21} y \][/tex]

- Multiply both sides by [tex]\(-21\)[/tex] to solve for [tex]\( y \)[/tex]:
[tex]\[ -21 \left( x - \frac{1}{3} \right) = y \][/tex]

- Distribute the [tex]\(-21\)[/tex]:
[tex]\[ y = -21x + 7 \][/tex]

Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = 7 - 21x \][/tex]

Therefore, the correct answer is:

B. [tex]\( f^{-1}(x) = 7 - 21x \)[/tex]