How much energy is required to melt 2 kg of gold? Use the table below and the equation [tex]Q = m L_{\text{fusion}}[/tex].

\begin{tabular}{|c|c|c|c|c|}
\hline
Substance & \begin{tabular}{c}
Latent Heat \\
Fusion \\
(kJ/kg)
\end{tabular} & \begin{tabular}{c}
Melting \\
Point \\
\left([tex]$^{\circ} C \right)
\end{tabular} & \begin{tabular}{c}
Latent Heat \\
Vaporization \\
(kJ/kg)
\end{tabular} & \begin{tabular}{c}
Boiling \\
Point \\
\left($[/tex]^{\circ} C \right)
\end{tabular} \\
\hline
Aluminum & 400 & 660 & 1100 & 2450 \\
\hline
Copper & 207 & 1083 & 4730 & 2566 \\
\hline
Gold & 62.8 & 1063 & 1720 & 2808 \\
\hline
Helium & 5.2 & -270 & 21 & -269 \\
\hline
Lead & 24.5 & 327 & 871 & 1751 \\
\hline
Mercury & 11.4 & -39 & 296 & 357 \\
\hline
Water & 335 & 0 & 2256 & 100 \\
\hline
\end{tabular}

A. 125.6 kJ
B. 10.4 kJ
C. 3440 kJ
D. 1720 kJ



Answer :

Let’s figure out the amount of energy required to melt 2 kg of gold using the provided information.

We are given the equation for the heat required to change the phase of a substance, [tex]\( Q = m \cdot L_{\text{fusion}} \)[/tex], where:
- [tex]\( Q \)[/tex] is the heat energy required.
- [tex]\( m \)[/tex] is the mass of the substance.
- [tex]\( L_{\text{fusion}} \)[/tex] is the latent heat of fusion of the substance.

From the table provided, we know the latent heat of fusion for gold is [tex]\( L_{\text{fusion}} = 62.8 \, \text{kJ/kg} \)[/tex].

Using the given values:
- [tex]\( m = 2 \, \text{kg} \)[/tex]
- [tex]\( L_{\text{fusion}} = 62.8 \, \text{kJ/kg} \)[/tex]

We can now substitute these values into the equation:

[tex]\[ Q = m \cdot L_{\text{fusion}} = 2 \, \text{kg} \times 62.8 \, \text{kJ/kg} \][/tex]

Performing the multiplication:

[tex]\[ Q = 2 \times 62.8 = 125.6 \, \text{kJ} \][/tex]

Therefore, the amount of energy required to melt 2 kg of gold is [tex]\( 125.6 \, \text{kJ} \)[/tex].

The correct answer is:
A. 125.6 kJ