10. Find the product: [tex]4i(2 - 8i)[/tex]

A. [tex]4i[/tex]
B. 0
C. [tex]-32 + 8i[/tex]
D. [tex]32 + 8i[/tex]
E. [tex]-4i[/tex]



Answer :

Sure, let's go through the problem step-by-step.

We are asked to find the product of the complex number [tex]\(4i\)[/tex] and another complex number [tex]\(2 - 8i\)[/tex].

Given:
[tex]\[ 4i (2 - 8i) \][/tex]

To find the product, we will use the distributive property of multiplication over addition. Let's break it down:

1. Distribute [tex]\(4i\)[/tex] to both terms inside the parenthesis:
[tex]\[ 4i \cdot 2 + 4i \cdot (-8i) \][/tex]

2. Now calculate these products individually:
[tex]\[ 4i \cdot 2 = 8i \][/tex]
[tex]\[ 4i \cdot (-8i) = -32i^2 \][/tex]

3. Recall that [tex]\(i^2 = -1\)[/tex]. Using this identity:
[tex]\[ -32i^2 = -32 \cdot (-1) = 32 \][/tex]

4. Combine the real part and the imaginary part:
[tex]\[ 8i + 32 \][/tex]

5. It is common to write the real part first in complex numbers:
[tex]\[ 32 + 8i \][/tex]

So, the product of [tex]\(4i\)[/tex] and [tex]\(2 - 8i\)[/tex] is:
[tex]\[ 32 + 8i \][/tex]

Hence, the correct answer is:
[tex]\[ \boxed{32+8i} \][/tex]

So, the correct option is:
d. [tex]\( 32+8i \)[/tex]
Let's go through the calculation step-by-step again:

Given the complex numbers:
4i and 2 - 8i.
To find their product, we use the distributive property:
1. Distribute 4i to both terms inside the parentheses:
4i•2+4i•(-8i)
2. Calculate each product:
• 42•2 =82
• 4i•(-8i) =-3212
3. Recall that i = —1. Therefore:
3212=-32-(-1) = 32
4. Combine the real and imaginary parts:
32 + 8i
Thus, the product of 4i and 2 - 8i is:
32 + 8i.
The correct answer is:
32 + 8i.