Fill in the blanks to factor the trinomial correctly: [tex]12v^2 + 11v - 15[/tex]

[tex]( \_ v + 5)( \_ v - 3)[/tex]

- The correct numbers are the next two digits of your code.



Answer :

To factor the trinomial [tex]\(12v^2 + 11v - 15\)[/tex], we can break it down step by step. Here's the process:

1. Identify coefficients and constants: In the trinomial [tex]\(12v^2 + 11v - 15\)[/tex]:
- The coefficient of [tex]\(v^2\)[/tex] is [tex]\(12\)[/tex].
- The coefficient of [tex]\(v\)[/tex] is [tex]\(11\)[/tex].
- The constant term is [tex]\(-15\)[/tex].

2. Split the middle term: We need to find two numbers that multiply to [tex]\(12 \times (-15)= -180\)[/tex] and add up to [tex]\(11\)[/tex]. The correct pair of numbers are [tex]\(15\)[/tex] and [tex]\(-4\)[/tex].

3. Rewrite and factor by grouping:
[tex]\[ 12v^2 + 15v - 4v - 15 \][/tex]

Now, group the terms:
[tex]\[ (12v^2 + 15v) + (-4v - 15) \][/tex]

4. Factor out the greatest common factor (GCF) from each group:
[tex]\[ 3v(4v + 5) - 3(4v + 5) \][/tex]

5. Factor out the common binomial factor:
[tex]\[ (4v + 5)(3v - 3) \][/tex]

Therefore, the correct factorization of the trinomial [tex]\(12v^2 + 11v - 15\)[/tex] is:
[tex]\[ (4v + 5)(3v - 3) \][/tex]

So the filled-in blanks should be:
[tex]\[ 12v^2 + 11v - 15 = (4v + 5)(3v - 3) \][/tex]