Certainly! Let's simplify the given expression step by step:
The given expression is:
[tex]\[
\frac{-20 x^4}{-5 x^3}
\][/tex]
### Step 1: Simplify the Coefficients
First, we simplify the coefficients.
- The numerator coefficient is [tex]\(-20\)[/tex].
- The denominator coefficient is [tex]\(-5\)[/tex].
To simplify [tex]\(\frac{-20}{-5}\)[/tex]:
[tex]\[
\frac{-20}{-5} = 4
\][/tex]
### Step 2: Simplify the Powers of [tex]\(x\)[/tex]
Next, we simplify the powers of [tex]\(x\)[/tex].
- The power of [tex]\(x\)[/tex] in the numerator is [tex]\(4\)[/tex].
- The power of [tex]\(x\)[/tex] in the denominator is [tex]\(3\)[/tex].
To simplify [tex]\(\frac{x^4}{x^3}\)[/tex]:
[tex]\[
x^{4-3} = x^1 = x
\][/tex]
### Step 3: Combine the Simplified Coefficients and the Powers of [tex]\(x\)[/tex]
Now, we combine the simplified coefficient and the simplified power of [tex]\(x\)[/tex]:
[tex]\[
4 \cdot x = 4x
\][/tex]
### Final Answer
The simplified form of the given expression is:
[tex]\[
4x
\][/tex]
Thus,
[tex]\[
\frac{-20 x^4}{-5 x^3} = 4x
\][/tex]