Answer :

Certainly! Let's simplify the given expression step by step:

The given expression is:

[tex]\[ \frac{-20 x^4}{-5 x^3} \][/tex]

### Step 1: Simplify the Coefficients
First, we simplify the coefficients.

- The numerator coefficient is [tex]\(-20\)[/tex].
- The denominator coefficient is [tex]\(-5\)[/tex].

To simplify [tex]\(\frac{-20}{-5}\)[/tex]:

[tex]\[ \frac{-20}{-5} = 4 \][/tex]

### Step 2: Simplify the Powers of [tex]\(x\)[/tex]
Next, we simplify the powers of [tex]\(x\)[/tex].

- The power of [tex]\(x\)[/tex] in the numerator is [tex]\(4\)[/tex].
- The power of [tex]\(x\)[/tex] in the denominator is [tex]\(3\)[/tex].

To simplify [tex]\(\frac{x^4}{x^3}\)[/tex]:

[tex]\[ x^{4-3} = x^1 = x \][/tex]

### Step 3: Combine the Simplified Coefficients and the Powers of [tex]\(x\)[/tex]
Now, we combine the simplified coefficient and the simplified power of [tex]\(x\)[/tex]:

[tex]\[ 4 \cdot x = 4x \][/tex]

### Final Answer
The simplified form of the given expression is:

[tex]\[ 4x \][/tex]

Thus,

[tex]\[ \frac{-20 x^4}{-5 x^3} = 4x \][/tex]