Select the correct answer.

What is the inverse of this function?

[tex]f(x)=\sqrt[3]{x+12}[/tex]

A. [tex]f^{-1}(x)=12-x^3[/tex]
B. [tex]f^{-1}(x)=x^3-12[/tex]
C. [tex]f^{-1}(x)=x-12[/tex]
D. [tex]f^{-1}(x)=x+12[/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = \sqrt[3]{x + 12} \)[/tex], we need to follow these steps:

1. Express the function as an equation:

[tex]\[ y = \sqrt[3]{x + 12} \][/tex]

2. Swap the variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex] to find the inverse. This means wherever there is [tex]\(y\)[/tex], we replace it with [tex]\(x\)[/tex], and wherever there is [tex]\(x\)[/tex], we replace it with [tex]\(y\)[/tex]:

[tex]\[ x = \sqrt[3]{y + 12} \][/tex]

3. Solve for [tex]\(y\)[/tex] to get the inverse function:
- To eliminate the cube root, we cube both sides of the equation:

[tex]\[ x^3 = y + 12 \][/tex]

- Now, we need to isolate [tex]\(y\)[/tex]. Subtract 12 from both sides:

[tex]\[ y = x^3 - 12 \][/tex]

4. Write the inverse function:

[tex]\[ f^{-1}(x) = x^3 - 12 \][/tex]

By these steps, we determined that the inverse function is [tex]\( f^{-1}(x) = x^3 - 12 \)[/tex].

Thus, the correct answer is:

B. [tex]\( f^{-1}(x) = x^3 - 12 \)[/tex]