Answer :
To solve for the number of pairs of shorts Edward sold, we start by carefully substituting the given values into the income equation:
[tex]\[ I = 100 + 12J + 5T + 7S + 5H - 8M \][/tex]
We know from the problem statement that:
- [tex]\( I = 197 \)[/tex] (total income)
- [tex]\( J = 5 \)[/tex] (pairs of jeans sold)
- [tex]\( T = 5 \)[/tex] (T-shirts sold)
- [tex]\( H = 3 \)[/tex] (hats sold)
- [tex]\( M = 3 \)[/tex] (meals bought)
- [tex]\( S \)[/tex] (pairs of shorts sold) is what we're solving for.
Substitute these values into the equation:
[tex]\[ 197 = 100 + 12(5) + 5(5) + 7S + 5(3) - 8(3) \][/tex]
Next, perform the arithmetic for the known terms:
[tex]\[ 197 = 100 + 60 + 25 + 7S + 15 - 24 \][/tex]
Simplify the equation step by step:
[tex]\[ 197 = 100 + 60 + 25 + 15 - 24 + 7S \][/tex]
Combine the constants:
[tex]\[ 197 = 100 + 60 + 25 + 15 - 24 + 7S \][/tex]
[tex]\[ 197 = 176 + 7S \][/tex]
Now isolate [tex]\( S \)[/tex] by subtracting 176 from both sides of the equation:
[tex]\[ 197 - 176 = 7S \][/tex]
[tex]\[ 21 = 7S \][/tex]
Finally, solve for [tex]\( S \)[/tex] by dividing both sides by 7:
[tex]\[ S = \frac{21}{7} \][/tex]
[tex]\[ S = 3 \][/tex]
So, Edward sold [tex]\( \boxed{3} \)[/tex] pairs of shorts.
[tex]\[ I = 100 + 12J + 5T + 7S + 5H - 8M \][/tex]
We know from the problem statement that:
- [tex]\( I = 197 \)[/tex] (total income)
- [tex]\( J = 5 \)[/tex] (pairs of jeans sold)
- [tex]\( T = 5 \)[/tex] (T-shirts sold)
- [tex]\( H = 3 \)[/tex] (hats sold)
- [tex]\( M = 3 \)[/tex] (meals bought)
- [tex]\( S \)[/tex] (pairs of shorts sold) is what we're solving for.
Substitute these values into the equation:
[tex]\[ 197 = 100 + 12(5) + 5(5) + 7S + 5(3) - 8(3) \][/tex]
Next, perform the arithmetic for the known terms:
[tex]\[ 197 = 100 + 60 + 25 + 7S + 15 - 24 \][/tex]
Simplify the equation step by step:
[tex]\[ 197 = 100 + 60 + 25 + 15 - 24 + 7S \][/tex]
Combine the constants:
[tex]\[ 197 = 100 + 60 + 25 + 15 - 24 + 7S \][/tex]
[tex]\[ 197 = 176 + 7S \][/tex]
Now isolate [tex]\( S \)[/tex] by subtracting 176 from both sides of the equation:
[tex]\[ 197 - 176 = 7S \][/tex]
[tex]\[ 21 = 7S \][/tex]
Finally, solve for [tex]\( S \)[/tex] by dividing both sides by 7:
[tex]\[ S = \frac{21}{7} \][/tex]
[tex]\[ S = 3 \][/tex]
So, Edward sold [tex]\( \boxed{3} \)[/tex] pairs of shorts.