The normal monthly temperatures [tex]$\left( { }^{\circ} F \right)$[/tex] for Omaha, Nebraska, are recorded below.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
Month & Jan & Feb & Mar & Apr & May & Jun & Jul & Aug & Sep & Oct & Nov & Dec \\
\hline
[tex]$t$[/tex] & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
Temp. & [tex]$21^{\circ}$[/tex] & [tex]$27^{\circ}$[/tex] & [tex]$39^{\circ}$[/tex] & [tex]$52^{\circ}$[/tex] & [tex]$62^{\circ}$[/tex] & [tex]$72^{\circ}$[/tex] & [tex]$77^{\circ}$[/tex] & [tex]$74^{\circ}$[/tex] & [tex]$65^{\circ}$[/tex] & [tex]$53^{\circ}$[/tex] & [tex]$39^{\circ}$[/tex] & [tex]$25^{\circ}$[/tex] \\
\hline
\end{tabular}

a. Write a sinusoidal function that models Omaha's monthly temperature variation.
b. Use the model to estimate the normal temperature during the month of April.

A.
[tex]\[ y = 28 \cos \left( \frac{\pi}{6} t - \frac{7 \pi}{6} \right) + 49 \][/tex]
[tex]\[ y(4) = 49^{\circ} \][/tex]

B.
[tex]\[ y = 49 \cos \left( \frac{\pi}{6} t - \frac{7 \pi}{6} \right) + 28 \][/tex]
[tex]\[ y(4) = 56^{\circ} \][/tex]

C.
[tex]\[ y = 28 \sin \left( \frac{\pi}{6} t - \frac{7 \pi}{6} \right) + 49 \][/tex]
[tex]\[ y(4) = 49^{\circ} \][/tex]



Answer :

Let's go through each of the sinusoidal functions step-by-step and determine which one correctly models the monthly temperature and the estimate for the temperature in April.

### Sinusoidal Models:
We have three sinusoidal models presented:

1. [tex]\( y = 28 \cos\left(\frac{\pi}{6} t - \frac{7\pi}{6}\right) + 49 \)[/tex]
2. [tex]\( y = 49 \cos\left(\frac{\pi}{6} t - \frac{7\pi}{6}\right) + 28 \)[/tex]
3. [tex]\( y = 28 \sin\left(\frac{\pi}{6} t - \frac{7\pi}{6}\right) + 49 \)[/tex]

### Estimating the temperature for April ([tex]\( t = 4 \)[/tex]):

#### Model 1: [tex]\( y = 28 \cos\left(\frac{\pi}{6} t - \frac{7\pi}{6}\right) + 49 \)[/tex]
For [tex]\( t = 4 \)[/tex]:
[tex]\[ y(4) = 28 \cos\left(\frac{\pi}{6} \cdot 4 - \frac{7\pi}{6}\right) + 49 \][/tex]
[tex]\[ y(4) = 28 \cos\left(\frac{4\pi}{6} - \frac{7\pi}{6}\right) + 49 \][/tex]
[tex]\[ y(4) = 28 \cos\left(\frac{-3\pi}{6}\right) + 49 \][/tex]
[tex]\[ y(4) = 28 \cos\left(-\frac{\pi}{2}\right) + 49 \][/tex]
[tex]\[ y(4) = 28 \cdot 0 + 49 \][/tex]
[tex]\[ y(4) = 49 \][/tex]
So, the estimated temperature for April using Model 1 is [tex]\( 49^\circ F \)[/tex].

#### Model 2: [tex]\( y = 49 \cos\left(\frac{\pi}{6} t - \frac{7\pi}{6}\right) + 28 \)[/tex]
For [tex]\( t = 4 \)[/tex]:
[tex]\[ y(4) = 49 \cos\left(\frac{\pi}{6} \cdot 4 - \frac{7\pi}{6}\right) + 28 \][/tex]
[tex]\[ y(4) = 49 \cos\left(\frac{4\pi}{6} - \frac{7\pi}{6}\right) + 28 \][/tex]
[tex]\[ y(4) = 49 \cos\left(\frac{-3\pi}{6}\right) + 28 \][/tex]
[tex]\[ y(4) = 49 \cos\left(-\frac{\pi}{2}\right) + 28 \][/tex]
[tex]\[ y(4) = 49 \cdot 0 + 28 \][/tex]
[tex]\[ y(4) = 28 \][/tex]
So, the estimated temperature for April using Model 2 is [tex]\( 28^\circ F \)[/tex].

#### Model 3: [tex]\( y = 28 \sin\left(\frac{\pi}{6} t - \frac{7\pi}{6}\right) + 49 \)[/tex]
For [tex]\( t = 4 \)[/tex]:
[tex]\[ y(4) = 28 \sin\left(\frac{\pi}{6} \cdot 4 - \frac{7\pi}{6}\right) + 49 \][/tex]
[tex]\[ y(4) = 28 \sin\left(\frac{4\pi}{6} - \frac{7\pi}{6}\right) + 49 \][/tex]
[tex]\[ y(4) = 28 \sin\left(\frac{-3\pi}{6}\right) + 49 \][/tex]
[tex]\[ y(4) = 28 \sin\left(-\frac{\pi}{2}\right) + 49 \][/tex]
[tex]\[ y(4) = 28 \cdot (-1) + 49 \][/tex]
[tex]\[ y(4) = -28 + 49 \][/tex]
[tex]\[ y(4) = 21 \][/tex]
So, the estimated temperature for April using Model 3 is [tex]\( 21^\circ F \)[/tex].

### Conclusion:
Comparing the results:

- Model 1: [tex]\( y(4) = 49^\circ F \)[/tex]
- Model 2: [tex]\( y(4) = 28^\circ F \)[/tex]
- Model 3: [tex]\( y(4) = 21^\circ F \)[/tex]

Given the results, we can see the following:

- For option 1: The function [tex]\( y = 28 \cos\left(\frac{\pi}{6} t - \frac{7\pi}{6}\right) + 49 \)[/tex] produces an estimate of [tex]\( 49^\circ F \)[/tex] for April.
- For option 3: The function [tex]\( y = 28 \sin\left(\frac{\pi}{6} t - \frac{7\pi}{6}\right) + 49 \)[/tex] produces an estimate of [tex]\( 21^\circ F \)[/tex] for April.
- Neither matches the given temperature [tex]\( 52^\circ \)[/tex] for April.

Given that [tex]\(49^\circ F \)[/tex] match with Model 1, the most reasonable conclusion is that Model 1 is a better representation of temperature variation.

### Final Answers:
a. The sinusoidal function that models Omaha's monthly temperature variation is [tex]\( y = 28 \cos\left(\frac{\pi}{6} t - \frac{7\pi}{6}\right) + 49 \)[/tex].

b. Using this model, the estimated normal temperature during the month of April is [tex]\( y(4) = 49^\circ F \)[/tex].