The terminal side of an angle measuring [tex]\frac{\pi}{6}[/tex] radians intersects the unit circle at which point?

A. [tex]\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)[/tex]
B. [tex]\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)[/tex]
C. [tex]\left(\frac{\sqrt{3}}{3}, \frac{1}{2}\right)[/tex]



Answer :

To find the intersection point of the terminal side of an angle measuring [tex]\(\frac{\pi}{6}\)[/tex] radians with the unit circle, follow these steps:

1. Understand the Unit Circle:
- The unit circle is a circle with a radius of 1 centered at the origin (0,0).
- Any point on the unit circle can be defined as [tex]\((\cos(\theta), \sin(\theta))\)[/tex] where [tex]\(\theta\)[/tex] is the angle measured in radians from the positive x-axis.

2. Use the Given Angle:
- The angle given is [tex]\(\frac{\pi}{6}\)[/tex] radians.

3. Apply Trigonometric Functions:
- For the angle [tex]\(\frac{\pi}{6}\)[/tex]:
- [tex]\(\cos\left(\frac{\pi}{6}\right)\)[/tex] gives the x-coordinate.
- [tex]\(\sin\left(\frac{\pi}{6}\right)\)[/tex] gives the y-coordinate.

4. Evaluate the Trigonometric Values:
- From trigonometry, we know:
- [tex]\(\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\)[/tex]
- [tex]\(\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\)[/tex]

5. Identify the Intersection Point:
- Using the values obtained, the coordinates of the intersection point are:
- [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex]

Given this analysis, the correct intersection point of the terminal side of an angle of [tex]\(\frac{\pi}{6}\)[/tex] radians with the unit circle is:
[tex]\[ \left(0.8660254037844387, 0.49999999999999994 \right) \][/tex]

Thus, the choice corresponding to these values is:
[tex]\[ \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \][/tex]