Review the proof.

[tex]\[
\begin{array}{|c|c|}
\hline
\text{Step} & \text{Statement} \\
\hline
1 & \cos^2\left(\frac{x}{2}\right) = \frac{\sin(x) + \tan(x)}{2 \tan(x)} \\
\hline
2 & \cos^2\left(\frac{x}{2}\right) = \frac{\sin(x) + \frac{\sin(x)}{\cos(x)}}{2 \left(\frac{\sin(x)}{\cos(x)}\right)} \\
\hline
3 & \cos^2\left(\frac{x}{2}\right) = \frac{\frac{\sin(x) (\cos(x) + 1)}{\cos(x)}}{\frac{2 \sin(x)}{\cos(x)}} \\
\hline
4 & \cos^2\left(\frac{x}{2}\right) = \left(\frac{\sin(x) (\cos(x) + 1)}{\cos(x)}\right) \left(\frac{\cos(x)}{2 \sin(x)}\right) \\
\hline
5 & \cos^2\left(\frac{x}{2}\right) = \frac{\cos(x) + 1}{2} \\
\hline
6 & \cos\left(\frac{x}{2}\right) = \pm \sqrt{\frac{\cos(x) + 1}{2}} \\
\hline
7 & \cos\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 + \cos(x)}{2}} \\
\hline
\end{array}
\][/tex]

Which expression will complete step 3 in the proof?

A. [tex]\(\sin^2(x)\)[/tex]
B. [tex]\(2 \sin(x)\)[/tex]
C. [tex]\(2 \sin(x) \cos(x)\)[/tex]
D. [tex]\(\sin(x) \cos(x) + \sin(x)\)[/tex]



Answer :

Let's analyze the proof step by step to determine the expression that will complete step 3.

Given:

Step 1:
[tex]\[ \cos^2\left(\frac{x}{2}\right) = \frac{\sin(x) + \tan(x)}{2 \tan(x)} \][/tex]

Step 2:
[tex]\[ \cos^2\left(\frac{x}{2}\right) = \frac{\sin(x) + \frac{\sin(x)}{\cos(x)}}{2 \left(\frac{\sin(x)}{\cos(x)}\right)} \][/tex]

Next, we need to simplify the expression on the right-hand side to proceed to Step 3.

First, combine like terms in the numerator:
[tex]\[ \sin(x) + \frac{\sin(x)}{\cos(x)} = \frac{\sin(x) \cos(x) + \sin(x)}{\cos(x)} \][/tex]

So, the numerator becomes:
[tex]\[ = \frac{\sin(x) \cos(x) + \sin(x)}{\cos(x)} \][/tex]

Now, rewrite the entire fraction:
[tex]\[ \cos^2\left(\frac{x}{2}\right) = \frac{\frac{\sin(x) \cos(x) + \sin(x)}{\cos(x)}}{2 \left(\frac{\sin(x)}{\cos(x)}\right)} \][/tex]

To simplify the right-hand side further, multiply numerator and denominator by [tex]\(\cos(x)\)[/tex]:
[tex]\[ = \frac{(\sin(x) \cos(x) + \sin(x)) \cdot \cos(x)}{2 \sin(x) \cdot \cos(x)} \][/tex]

After canceling out the [tex]\(\cos(x)\)[/tex] terms, we get:
[tex]\[ = \frac{\sin(x) (\cos(x) + 1)}{2 \sin(x)} \][/tex]

Lastly, cancel out [tex]\(\sin(x)\)[/tex] in the numerator and the denominator:
[tex]\[ = \frac{\cos(x) + 1}{2} \][/tex]

We can see that this is the desired simplification.

Given the available options:
- [tex]\(\sin^2(x)\)[/tex]
- [tex]\(2 \sin(x)\)[/tex]
- [tex]\(2 \sin(x) \cos(x)\)[/tex]
- [tex]\(\sin(x) \cos(x) + \sin(x)\)[/tex]

The correct expression for step 3 in the proof to bridge from Step 2 to Step 4 is:
[tex]\[ \sin(x) \cos(x) + \sin(x) \][/tex]