Which equation can be used to determine the reference angle, [tex]$r$[/tex], if [tex]$\theta=\frac{\pi}{12}$[/tex]?

A. [tex][tex]$r=\theta$[/tex][/tex]
B. [tex]$r=\pi-\theta$[/tex]
C. [tex]$r=\theta-\pi$[/tex]
D. [tex][tex]$r=2\pi-\theta$[/tex][/tex]



Answer :

To determine the reference angle [tex]\( r \)[/tex] for a given angle [tex]\( \theta \)[/tex] in the first quadrant, we use the property that the reference angle for any angle [tex]\( \theta \)[/tex] in the first quadrant is the angle itself.

Given that [tex]\( \theta = \frac{\pi}{12} \)[/tex] lies in the first quadrant:

The correct equation to determine the reference angle [tex]\( r \)[/tex] is:

[tex]\[ r = \theta \][/tex]

Therefore:

[tex]\[ r = \frac{\pi}{12} \][/tex]

Thus, [tex]\( r = \theta \)[/tex] is the correct equation to determine the reference angle when [tex]\( \theta = \frac{\pi}{12} \)[/tex].