Answered

\begin{tabular}{|c|c|}
\hline Sifat sifat bilangan berpangkat & Contoh \\
\hline [tex]$a^m \times a^n=a^{m+n}$[/tex] & [tex]$2^3 \times 2^2=2^{3+2}=2^5=32$[/tex] \\
\hline [tex]$\left(a^m\right)^n = a^{m \times n}$[/tex] & \\
\hline [tex]$\frac{a^m}{a^n}=a^{m-n}$[/tex] & \\
\hline [tex]$(a b)^m = a^m b^m$[/tex] & \\
\hline [tex]$a^0 = 1$[/tex] & \\
\hline [tex]$\frac{1}{a^m} = a^{-m}$[/tex] & \\
\hline [tex]$\frac{a^n}{a^m} = a^{n-m}$[/tex] & \\
\hline [tex]$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$[/tex] & \\
\hline
\end{tabular}



Answer :

Tentu! Mari kita selesaikan setiap bagian dari tabel ini satu per satu dengan penjelasan yang rinci:

\begin{tabular}{|c|c|}
\hline Sifat-sifat bilangan berpangkat & Contoh \\
\hline[tex]$a^m \times a^n=a^{m+n}$[/tex] & [tex]$2^3 \times 2^2 = 2^{3+2} = 2^5 = 32$[/tex] \\
\hline[tex]$\left( a^m \right)^n = a^{m \times n}$[/tex] & [tex]$\left(2^3 \right)^2 = 2^{3 \times 2} = 2^6 = 64$[/tex] \\
\hline \begin{tabular}{l} [tex]$\frac{a^m}{a^n} = a^{m-n}$[/tex] \end{tabular} & [tex]$2^5 / 2^2 = 2^{5-2} = 2^3 = 8$[/tex] \\
\hline[tex]$(ab)^m = a^m \times b^m$[/tex] & [tex]$(2 \times 3)^2 = 2^2 \times 3^2 = 4 \times 9 = 36$[/tex] \\
\hline[tex]$a^0 = 1$[/tex] & [tex]$2^0 = 1$[/tex] \\
\hline \begin{tabular}{l} [tex]$\frac{1}{a^m} = a^{-m}$[/tex] \end{tabular} & [tex]$\frac{1}{2^3} = 2^{-3} = 0.125$[/tex] \\
\hline \begin{tabular}{l} [tex]$\frac{1}{a^{n-m}} = a^{m-n}$[/tex] \end{tabular} & [tex]$\frac{1}{2^{5-2}} = 2^{2-5} = 2^{-3} = 0.125$[/tex] \\
\hline[tex]$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$[/tex] & [tex]$\left( \frac{4}{2} \right)^2 = \frac{4^2}{2^2} = \frac{16}{4} = 4$[/tex] \\
\hline
\end{tabular}

Semua bagian dalam tabel telah kami lengkapi dengan contoh yang sesuai berdasarkan sifat-sifat bilangan berpangkat.