Answered

Rewrite the following expression using exponential notation:

[tex]\[
\underbrace{2 \times 2 \times 2 \times 2 \times \ldots \times 2}_{20 \text{ factors}} = 2^{20}
\][/tex]

Evaluate the expression:

[tex]\[
2^{20} = ?
\][/tex]



Answer :

To solve the expression [tex]\(\underbrace{2 \times 2 \times 2 \times 2 \times \ldots \times 2}_{20 \text{ factors}}\)[/tex], we recognize that we have the number 2 multiplied by itself 20 times. This can be represented using exponential notation as [tex]\(2^{20}\)[/tex].

Exponential notation [tex]\(a^b\)[/tex] means multiplying the base [tex]\(a\)[/tex] by itself [tex]\(b\)[/tex] times. For this particular example:

[tex]\[ 2^{20} = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \][/tex]

Now, let's calculate [tex]\(2^{20}\)[/tex]:

[tex]\[ 2^{20} = 1,048,576 \][/tex]

So the value of the expression [tex]\(\underbrace{2 \times 2 \times 2 \times 2 \times \ldots \times 2}_{20 \text{ factors}}\)[/tex] or [tex]\(2^{20}\)[/tex] is [tex]\(1,048,576\)[/tex].