If [tex]\tan \theta = -\frac{3}{8}[/tex], which expression is equivalent to [tex]\cot \theta[/tex]?

A. [tex]\frac{1}{-\frac{3}{8}}[/tex]

B. [tex]-\frac{3}{8} + 1[/tex]

C. [tex]\sqrt{1+\left(-\frac{8}{3}\right)^2}[/tex]

D. [tex]\left(-\frac{3}{8}\right)^2 + 1[/tex]



Answer :

To find [tex]\(\cot \theta\)[/tex] given that [tex]\(\tan \theta = -\frac{3}{8}\)[/tex], we need to recall the relationship between the tangent and cotangent functions. The cotangent function is the reciprocal of the tangent function, which means [tex]\(\cot \theta = \frac{1}{\tan \theta}\)[/tex].

Given [tex]\(\tan \theta = -\frac{3}{8}\)[/tex], we can find [tex]\(\cot \theta\)[/tex] by taking the reciprocal of [tex]\(\tan \theta\)[/tex]:

[tex]\[ \cot \theta = \frac{1}{-\frac{3}{8}} \][/tex]

To simplify this expression, we realize that dividing by a fraction is equivalent to multiplying by its reciprocal. Therefore:

[tex]\[ \frac{1}{-\frac{3}{8}} = 1 \times \left(-\frac{8}{3}\right) = -\frac{8}{3} \][/tex]

Thus, the expression equivalent to [tex]\(\cot \theta\)[/tex] is [tex]\(\frac{1}{-\frac{3}{8}}\)[/tex].

This matches the first option provided:

[tex]\[ \frac{1}{-\frac{3}{8}} \][/tex]

Therefore, the correct answer is:

[tex]\[ \frac{1}{-\frac{3}{8}} \][/tex]