Find [tex]\( f(-1) \)[/tex] for the piecewise function.

[tex]\[
f(x) =
\begin{cases}
-2x + 1 & \text{if } x \leq 1 \\
-x + 2 & \text{if } x \ \textgreater \ 1
\end{cases}
\][/tex]

[tex]\[
f(-1) = [?]
\][/tex]



Answer :

To find the value of [tex]\( f(-1) \)[/tex] for the given piecewise function, we need to determine which part of the piecewise function applies when [tex]\( x = -1 \)[/tex].

The piecewise function is defined as:

[tex]\[ f(x) = \begin{cases} -2x + 1 & \text{if } x \leq 1 \\ -x + 2 & \text{if } x > 1 \end{cases} \][/tex]

Since [tex]\( -1 \leq 1 \)[/tex], we use the first part of the piecewise function, which is [tex]\( f(x) = -2x + 1 \)[/tex].

Now, substitute [tex]\( x = -1 \)[/tex] into [tex]\( -2x + 1 \)[/tex]:

[tex]\[ f(-1) = -2(-1) + 1 \][/tex]

Perform the multiplication:

[tex]\[ -2(-1) = 2 \][/tex]

Then, add 1:

[tex]\[ 2 + 1 = 3 \][/tex]

Therefore, the value of [tex]\( f(-1) \)[/tex] is:

[tex]\[ f(-1) = 3 \][/tex]