1. Segment [tex]\(\overline{R T}\)[/tex] has endpoints [tex]\(R(-3, 4)\)[/tex] and [tex]\(T(-7, -3)\)[/tex]. What are the coordinates of the midpoint of [tex]\(\overline{R T}\)[/tex]?

A. [tex]\(\left(-2, -3 \frac{1}{2}\right)\)[/tex]

B. [tex]\(\left(-4 \frac{1}{2}, \frac{1}{2}\right)\)[/tex]

C. [tex]\(\left(-5, \frac{1}{2}\right)\)[/tex]

D. [tex]\(\left(\frac{1}{2}, -5\right)\)[/tex]



Answer :

To find the midpoint of a line segment with endpoints [tex]\( R(x_1, y_1) \)[/tex] and [tex]\( T(x_2, y_2) \)[/tex], we use the midpoint formula. The midpoint [tex]\( M \)[/tex] is given by the formula:

[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

For the given endpoints [tex]\( R(-3, 4) \)[/tex] and [tex]\( T(-7, -3) \)[/tex], we need to plug these coordinates into the midpoint formula.

1. First, calculate the x-coordinate of the midpoint:
[tex]\[ \frac{x_1 + x_2}{2} = \frac{-3 + (-7)}{2} \][/tex]
Simplify the expression inside the parentheses:
[tex]\[ \frac{-3 - 7}{2} = \frac{-10}{2} = -5 \][/tex]

2. Next, calculate the y-coordinate of the midpoint:
[tex]\[ \frac{y_1 + y_2}{2} = \frac{4 + (-3)}{2} \][/tex]
Simplify the expression inside the parentheses:
[tex]\[ \frac{4 - 3}{2} = \frac{1}{2} = 0.5 \][/tex]

So, the coordinates of the midpoint are:
[tex]\[ \left( -5, 0.5 \right) \][/tex]

Therefore, the correct answer is:
[tex]\[ \left(-5, \frac{1}{2}\right) \][/tex]