Answer :
Let's evaluate the polynomial [tex]\( -7x^3 + 3x^2 + 11x - 9 \)[/tex] at [tex]\( x = -2 \)[/tex]:
1. Step 1: Substitute [tex]\( x = -2 \)[/tex] into the polynomial.
[tex]\[ -7(-2)^3 + 3(-2)^2 + 11(-2) - 9 \][/tex]
2. Step 2: Evaluate each term individually.
- Term 1: [tex]\( -7(-2)^3 \)[/tex]
[tex]\[ (-2)^3 = -8 \][/tex]
[tex]\[ -7 \times -8 = 56 \][/tex]
- Term 2: [tex]\( 3(-2)^2 \)[/tex]
[tex]\[ (-2)^2 = 4 \][/tex]
[tex]\[ 3 \times 4 = 12 \][/tex]
- Term 3: [tex]\( 11(-2) \)[/tex]
[tex]\[ 11 \times -2 = -22 \][/tex]
- Term 4: [tex]\( -9 \)[/tex] (Constant term remains the same.)
[tex]\[ -9 \][/tex]
3. Step 3: Add all the evaluated terms together.
[tex]\[ 56 + 12 - 22 - 9 \][/tex]
4. Step 4: Combine the values step-by-step.
First, add the positive values:
[tex]\[ 56 + 12 = 68 \][/tex]
Next, subtract the first negative value:
[tex]\[ 68 - 22 = 46 \][/tex]
Finally, subtract the second negative value:
[tex]\[ 46 - 9 = 37 \][/tex]
Therefore, the value of the polynomial [tex]\( -7x^3 + 3x^2 + 11x - 9 \)[/tex] when [tex]\( x = -2 \)[/tex] is [tex]\( \boxed{37} \)[/tex].
1. Step 1: Substitute [tex]\( x = -2 \)[/tex] into the polynomial.
[tex]\[ -7(-2)^3 + 3(-2)^2 + 11(-2) - 9 \][/tex]
2. Step 2: Evaluate each term individually.
- Term 1: [tex]\( -7(-2)^3 \)[/tex]
[tex]\[ (-2)^3 = -8 \][/tex]
[tex]\[ -7 \times -8 = 56 \][/tex]
- Term 2: [tex]\( 3(-2)^2 \)[/tex]
[tex]\[ (-2)^2 = 4 \][/tex]
[tex]\[ 3 \times 4 = 12 \][/tex]
- Term 3: [tex]\( 11(-2) \)[/tex]
[tex]\[ 11 \times -2 = -22 \][/tex]
- Term 4: [tex]\( -9 \)[/tex] (Constant term remains the same.)
[tex]\[ -9 \][/tex]
3. Step 3: Add all the evaluated terms together.
[tex]\[ 56 + 12 - 22 - 9 \][/tex]
4. Step 4: Combine the values step-by-step.
First, add the positive values:
[tex]\[ 56 + 12 = 68 \][/tex]
Next, subtract the first negative value:
[tex]\[ 68 - 22 = 46 \][/tex]
Finally, subtract the second negative value:
[tex]\[ 46 - 9 = 37 \][/tex]
Therefore, the value of the polynomial [tex]\( -7x^3 + 3x^2 + 11x - 9 \)[/tex] when [tex]\( x = -2 \)[/tex] is [tex]\( \boxed{37} \)[/tex].