Answer :

Certainly! Let's go through the process of dividing the polynomial [tex]\(a^2 + 6a + 5\)[/tex] by [tex]\(a + 1\)[/tex] step-by-step.

### Step-by-Step Solution:

1. Set up the polynomial division:

[tex]\[ \frac{a^2 + 6a + 5}{a + 1} \][/tex]

2. Divide the first term of the numerator by the first term of the denominator:

- Divide [tex]\(a^2\)[/tex] by [tex]\(a\)[/tex]:
[tex]\[ \frac{a^2}{a} = a \][/tex]

So, the first term of our quotient is [tex]\(a\)[/tex].

3. Multiply the entire denominator by this first term of the quotient:

- Multiply [tex]\(a\)[/tex] by [tex]\(a+1\)[/tex]:
[tex]\[ a \cdot (a + 1) = a^2 + a \][/tex]

4. Subtract this result from the original polynomial:

[tex]\[ (a^2 + 6a + 5) - (a^2 + a) \][/tex]

Breaking it down:
[tex]\[ a^2 + 6a + 5 - a^2 - a \][/tex]

Simplifying this, we get:
[tex]\[ 5a + 5 \][/tex]

5. Repeat the process with the new polynomial [tex]\(5a + 5\)[/tex]:

- Divide [tex]\(5a\)[/tex] by [tex]\(a\)[/tex]:
[tex]\[ \frac{5a}{a} = 5 \][/tex]

So, the next term of our quotient is [tex]\(5\)[/tex].

6. Multiply the entire denominator by this new term of the quotient:

- Multiply [tex]\(5\)[/tex] by [tex]\(a + 1\)[/tex]:
[tex]\[ 5 \cdot (a + 1) = 5a + 5 \][/tex]

7. Subtract this result from the remaining polynomial:

[tex]\[ (5a + 5) - (5a + 5) \][/tex]

This simplifies to:
[tex]\[ 0 \][/tex]

8. Combine the quotient and the remainder:

The quotient we have obtained by dividing [tex]\(a^2 + 6a + 5\)[/tex] by [tex]\(a + 1\)[/tex] is [tex]\(a + 5\)[/tex], and the remainder is [tex]\(0\)[/tex].

### Final Answer:

The result of dividing [tex]\(a^2 + 6a + 5\)[/tex] by [tex]\(a + 1\)[/tex] is:

[tex]\[ \boxed{a + 5} \][/tex]

With a remainder of:

[tex]\[ \boxed{0} \][/tex]