Select the correct answer from the drop-down menu.

Find the polynomial.

[tex]\[\left\{-\frac{1}{3}, 4\right\}\][/tex] is the solution set of [tex]\(\square\)[/tex].



Answer :

To find a polynomial with the given roots [tex]\(\left\{-\frac{1}{3}, 4\right\}\)[/tex], follow these steps:

1. Recall that if [tex]\(r\)[/tex] is a root of a polynomial, then [tex]\((x - r)\)[/tex] is a factor of that polynomial. Therefore, for the roots [tex]\(-\frac{1}{3}\)[/tex] and [tex]\(4\)[/tex], the corresponding factors are [tex]\((x + \frac{1}{3})\)[/tex] and [tex]\((x - 4)\)[/tex].

2. To find the polynomial, we need to multiply these factors together:
[tex]\[ (x + \frac{1}{3})(x - 4) \][/tex]

3. Distribute to multiply the two binomials:
[tex]\[ (x + \frac{1}{3})(x - 4) = x(x - 4) + \frac{1}{3}(x - 4) \][/tex]

4. Expand each term:
[tex]\[ = x^2 - 4x + \frac{1}{3}x - \frac{4}{3} \][/tex]

5. Combine like terms:
[tex]\[ = x^2 - \left(4 - \frac{1}{3}\right)x - \frac{4}{3} \][/tex]
[tex]\[ = x^2 - \frac{12}{3}x + \frac{1}{3}x - \frac{4}{3} \][/tex]
[tex]\[ = x^2 - \frac{12}{3}x + \frac{1}{3}x - \frac{4}{3} \][/tex]

6. Simplify the coefficients:
[tex]\[ = x^2 - \frac{11}{3}x - \frac{4}{3} \][/tex]

Thus, the polynomial in standard form with the given roots [tex]\(\left\{-\frac{1}{3}, 4\right\}\)[/tex] is

[tex]\[ x^2 - 3.66666666666667x - 1.33333333333333 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{x^2 - 3.66666666666667x - 1.33333333333333} \][/tex]