For each of the following, [tex]\( y \)[/tex] is directly proportional to [tex]\( x \)[/tex]. Copy and complete the tables.

(a)
\begin{tabular}{|c|c|c|c|c|c|}
\hline
[tex]\( x \)[/tex] & 4 & 20 & 24 & 36 & 44 \\
\hline
[tex]\( y \)[/tex] & & & 6 & 9 & 11 \\
\hline
\end{tabular}

(b)
\begin{tabular}{|c|c|c|c|c|c|}
\hline
[tex]\( x \)[/tex] & & & & & \\
\hline
[tex]\( y \)[/tex] & & & & & \\
\hline
\end{tabular}



Answer :

To solve this problem, we need to determine the values of [tex]\( y \)[/tex] based on the given values of [tex]\( x \)[/tex], given that [tex]\( y \)[/tex] is directly proportional to [tex]\( x \)[/tex]. This means we can express [tex]\( y \)[/tex] as [tex]\( y = kx \)[/tex] where [tex]\( k \)[/tex] is some constant of proportionality.

Let's start with the table provided:

[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 4 & 20 & 24 & 36 & 44 \\ \hline y & & & 6 & 9 & 11 \\ \hline \end{array} \][/tex]

Step 1: Identify a known pair of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
In this table, we know that when [tex]\( x = 24 \)[/tex], [tex]\( y = 6 \)[/tex].

Step 2: Use the known pair to find the constant of proportionality [tex]\( k \)[/tex].

[tex]\[ y = kx \implies 6 = k \cdot 24 \implies k = \frac{6}{24} = 0.25 \][/tex]

Step 3: Use the constant [tex]\( k \)[/tex] to find the missing values of [tex]\( y \)[/tex].

For [tex]\( x = 4 \)[/tex]:

[tex]\[ y = k \cdot x \implies y = 0.25 \cdot 4 = 1.0 \][/tex]

For [tex]\( x = 20 \)[/tex]:

[tex]\[ y = k \cdot x \implies y = 0.25 \cdot 20 = 5.0 \][/tex]

Replace the values in the table:

[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 4 & 20 & 24 & 36 & 44 \\ \hline y & 1.0 & 5.0 & 6 & 9 & 11 \\ \hline \end{array} \][/tex]

So, the completed table is:

[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 4 & 20 & 24 & 36 & 44 \\ \hline y & 1.0 & 5.0 & 6 & 9 & 11 \\ \hline \end{array} \][/tex]

This completes the necessary calculations for the given table.