Darcy and Leah are looking at some fabric selections in a store. All of the selections are marked at the same price, and the amount, in yards, of each fabric is written as an improper fraction. Which amount is the greatest?

A. [tex]\frac{22}{3}[/tex]
B. [tex]\frac{43}{5}[/tex]
C. [tex]\frac{78}{9}[/tex]
D. [tex]\frac{33}{4}[/tex]



Answer :

To determine which amount of fabric is the greatest, we need to compare the given improper fractions. Here are the fractions we need to compare:

- [tex]\( \frac{22}{3} \)[/tex]
- [tex]\( \frac{43}{5} \)[/tex]
- [tex]\( \frac{78}{9} \)[/tex]
- [tex]\( \frac{33}{4} \)[/tex]

First, let's convert these improper fractions to decimal form:

1. Convert [tex]\( \frac{22}{3} \)[/tex] to a decimal:
[tex]\[ \frac{22}{3} = 22 \div 3 \approx 7.3333 \][/tex]

2. Convert [tex]\( \frac{43}{5} \)[/tex] to a decimal:
[tex]\[ \frac{43}{5} = 43 \div 5 = 8.6 \][/tex]

3. Convert [tex]\( \frac{78}{9} \)[/tex] to a decimal:
[tex]\[ \frac{78}{9} = 78 \div 9 \approx 8.6667 \][/tex]

4. Convert [tex]\( \frac{33}{4} \)[/tex] to a decimal:
[tex]\[ \frac{33}{4} = 33 \div 4 = 8.25 \][/tex]

Now, we compare these decimal values:

- [tex]\( \frac{22}{3} \approx 7.3333 \)[/tex]
- [tex]\( \frac{43}{5} = 8.6 \)[/tex]
- [tex]\( \frac{78}{9} \approx 8.6667 \)[/tex]
- [tex]\( \frac{33}{4} = 8.25 \)[/tex]

From the decimal forms, it is clear that [tex]\( \frac{78}{9} \approx 8.6667 \)[/tex] is the greatest value among the fractions.

Therefore, the amount with the greatest yardage is:
[tex]\[ C. \frac{78}{9} \][/tex]