Find the sum of the first 8 terms of the following geometric sequence:

[tex]\[ 1024, -256, 64, -16, 4, \ldots \][/tex]

Hint: [tex]\[ S = \frac{a \left(1 - r^n \right)}{1 - r} \][/tex]

Round your answer to the nearest hundredth.
[tex]\[ \boxed{} \][/tex]



Answer :

To find the sum of the first 8 terms of the given geometric sequence [tex]\(1024, -256, 64, -16, 4, \ldots\)[/tex], we can use the formula for the sum of the first [tex]\(n\)[/tex] terms of a geometric sequence:

[tex]\[ S_n = \frac{a(1 - r^n)}{1 - r} \][/tex]

where:
- [tex]\(a\)[/tex] is the first term of the sequence,
- [tex]\(r\)[/tex] is the common ratio,
- [tex]\(n\)[/tex] is the number of terms.

1. Identify the first term ([tex]\(a\)[/tex]):
The first term of the sequence is [tex]\(a = 1024\)[/tex].

2. Determine the common ratio ([tex]\(r\)[/tex]):
To find the common ratio, divide the second term by the first term:
[tex]\[ r = \frac{-256}{1024} = -0.25 \][/tex]

3. Determine the number of terms ([tex]\(n\)[/tex]):
We are given that we need to find the sum of the first 8 terms, so [tex]\(n = 8\)[/tex].

4. Substitute the known values into the formula:
[tex]\[ S_8 = \frac{1024(1 - (-0.25)^8)}{1 - (-0.25)} \][/tex]

5. Calculate [tex]\((-0.25)^8\)[/tex]:
[tex]\[ (-0.25)^8 = 0.0000152587890625 \][/tex]

6. Substitute this value back into the formula:
[tex]\[ S_8 = \frac{1024 \left(1 - 0.0000152587890625\right)}{1 + 0.25} \][/tex]

7. Simplify the numerator and denominator:
[tex]\[ S_8 = \frac{1024 \cdot 0.9999847412109375}{1.25} \][/tex]

8. Perform the multiplication:
[tex]\[ 1024 \cdot 0.9999847412109375 \approx 1023.984375 \][/tex]

9. Divide by 1.25:
[tex]\[ \frac{1023.984375}{1.25} = 819.1875 \][/tex]

10. Round the result to the nearest hundredth:
[tex]\[ 819.19 \][/tex]

So, the sum of the first 8 terms of the sequence rounded to the nearest hundredth is [tex]\(819.19\)[/tex].